
Poster: META: Memory Exploration Tool for Android
Devices

Nisarg Parikh
L.D. College of Engineering

Ahmedabad
nisargnparikh@gmail.com

Varun Gohil
Indian Institute of Technology

Gandhinagar
gohil.varun@iitgn.ac.in

Manu Awasthi
Indian Institute of Technology

Gandhinagar
manua@iitgn.ac.in

ABSTRACT
Handheld devices are becoming increasingly common in
today’s world. With every passing year, the diversity of ap-
plications (apps) being supported by mobile platforms is
growing manyfold. In addition, Android, the most popular
handheld OS in the market is releasing a new version every
year, with a newer and richer set of APIs, enabling the next
generation of feature-rich applications.

To support these apps, hardware requirements of these de-
vices are increasing rapidly. Mobile SoCs need a larger num-
ber of faster cores, better GPUs and above all, higher DRAM
capacities to do justice to user experience. To augment capac-
ity requirements, non-volatile memories (NVMs) have been
proposed as a potential addition to LPDDR variants, which
have been the mainstay of mobile SoCs. However, few tools
exist to carry out architectural design space exploration of
main memory hierarchies featuring NVMs for newer An-
droid and app versions. In this paper, we present META, a
trace based tool for facilitating the exploration of memory hi-
erarchies in mobile devices. META uses an enhanced version
of Android emulator for generating raw instruction traces.
These traces are then fed into a cache hierarchy and memory
simulation modules to carry out design space exploration
for a wide variety of apps and memory technologies.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing systems and tools; •Computer systems
organization→ Architectures;

KEYWORDS
Memory Hierarchy; Simulation; Computer Architecture

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
MobiCom ’18, October 29-November 2, 2018, New Delhi, India
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5903-0/18/10.
https://doi.org/10.1145/3241539.3267737

ACM Reference Format:
Nisarg Parikh, Varun Gohil, andManu Awasthi. 2018. Poster: META:
Memory Exploration Tool for Android Devices. In The 24th An-
nual International Conference on Mobile Computing and Network-
ing (MobiCom ’18), October 29-November 2, 2018, New Delhi, India.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3241539.
3267737

1 INTRODUCTION
Mobile computing has grown substantially over the past
decade with more than 2 billion mobile devices being used
today [11]. Despite the rapid pace of advancements, and adop-
tion of devices in emerging economies, understanding the
architecture of handheld devices, especially from an applica-
tion’s perspective is lacking. Software updates for handhelds
have been happening very frequently – a new version of
the popular OS for handheld devices, Android, is now being
released every year [1] with each version having significant
upgrades over the last. For example, Android Oreo had a
complete redesign of entire OS stack to make it more mod-
ular. Incorporating these changes have also led to newer,
feature rich applications, as well as changes in the access
patterns of existing applications.

Mobile applications are expanding to have large memory
footprints and demand more resources. A report from PwC
expects the capacity requirements of mobile DRAM per de-
vice to increase by 170x every five years, starting 2010 [6].
With DRAM being a primary contributor to SoC energy con-
sumption [5], such dramatic increases in memory capacity
requirements are bound to increase the power budget of the
SoC, leading to much faster draining of the battery. Hence,
newer architectures for providing higher memory capacities
with lower energy consumption have to be devised.

Despite the growing importance of these devices, and
the numerous challenges being faced for architecting these,
there is a significant lack of research in this domain. A re-
cent report [11] compared the number of papers published
in leading conferences that have focused on exploration of
mobile systems, and found the number to be significantly
lacking, as compared to server architecture papers.

A major reason for this discrepancy is the lack of tools for
carrying out architectural level exploration, benchmarking,

Poster Presentation MobiCom’18, October 29–November 2, 2018, New Delhi, India

774

https://doi.org/10.1145/3241539.3267737
https://doi.org/10.1145/3241539.3267737
https://doi.org/10.1145/3241539.3267737


and evaluation. Exploratory studies are done using tools
like full system architectural simulators, which are able to
run the most recent versions of the operating systems and
applications. The server architecture exploration space is
replete with a number of these tools, capable of carrying out
wide range of analyses from statistical, event-queue based
simulation, to system-call emulation modes, all the way to
full system simulation [4] and emulation. There are a wide
variety of tools available for modeling individual subsystems,
from pipelines, to caches, DRAM, and SSDs.
Such a variety of tools is sorely missing for handheld de-

vices. The few available ones [8, 10] are not being maintained
actively, and have a dwindling user base. Moreover, these
tools are outdated - none of them support the newer versions
of Android (> 6), or the associated apps.

In this paper, we target issues associated with exploring a
very specific part of the entire handheld SoC design space
- the main memory subsystem. We propose to fill in the
gap in exploration mechanisms by developing a tool that can
evaluatememory hierarchies for handhelds quickly, and keep
pace with ever-upgrading system and application software.

2 BACKGROUND AND MOTIVATION
The current state of the art simulation tools in the handheld
SoC space rely on full system simulators which suffer from
multiple drawbacks. We enumerate some of the most impor-
tant ones to make a case for our tool’s design. First, existing
tools can simulate relatively older versions of Android. Some
platforms like Gem5 support creation of disk images that can
boot newer Android versions and run new apps. However,
this is a tedious process which doesn’t always work because
of compatibility issues. Disk images for contemporary SoCs
booting newer Android versions have also not been made
publicly available, limiting usability.

Second, using older OS versions results in experimentation
with older versions of apps, which means that the design
space is being explored for older applications, and not the
contemporary or future ones.
Third, full system simulators are very slow compared to

native execution [12]. With detailed, full system simulation
models, researchers can only simulate a few seconds of ac-
tual application execution. Since applications on handheld
devices involve a significant user interaction, longer activity
periods need to be simulated to get a better picture.
Fourth, every release of Android leads to a large number

of API changes and updates, as well as the release of new
APIs [2]. As a result, the behavior of existing applications
also changes. This information needs to be fed back to the
architectural evaluations for the next generation SoCs. In
addition, new APIs lead to release of new applications with
different behaviors.

Finally, one of the goals of META is to build a toolchain
that will help explore thememory hierarchy of handheld
devices. Existing tools [4, 10] are generic and are designed
to explore a number of features in the handheld devices, in-
cluding core micro-architecture, caches, coherence protocols
and many other things. The focus of this tool is going to be
explicitly on quickly and comprehensively exploring main
memory hierarchies for handhelds.

3 RELATEDWORK
The space for architectural exploration tools for mobile de-
vice is limited. Of the three main choices, GemDroid is a
comprehensive simulation framework for exploring SoC de-
sign space, targeted specifically for mobile systems [10]. It
helps to capture system level interaction between multiple
accelerators, cores and the operating system. The shortcom-
ing of the GemDroid lies in the fact that it supports only
Android 4.4 (KitKat) operating system. MofySim is a yet an-
other simulation framework for energy consumption and
performance analysis of mobile systems [8]. It is a setup
with built-in benchmarks to perform prerecorded actions on
user applications. Both these tools support only the much
older, Android KitKat (4.4). QSim [7] is a framework that
provides an API layer on top of QEMU which provides call-
backs for extracting instruction-level execution information
from QEMU. It boots a modified Linux kernel and supports
ARM64 and x86-64 ISAs. Booting Android OS on top of QSim
requires integration of Android and QEMU source code by
performing certain modifications in both. This is a difficult
task and has already been done by Google for building the
Android emulator on top of QEMU.

4 DESIGN OF META
META is built on top of Android Emulator, shipped with
the Android Open Source Project (AOSP). This emulator, is
built using a modified version of the QEMU virtualizer and
emulator [3]. QEMU and AOSP were chosen because this
combination serves the intent of designing this tool - quick
compatibility with future versions of Android. The emulator
works on Android Virtual Device (AVD), which describes
the hardware profile, system image, storage areas etc. of
the device being simulated. For future compatibility, newer
AVDs will have to be provided, which are typically shipped
with AOSP, making the integration much smoother.

We have modified the QEMU code shipped with AOSP
to generate instruction level traces of the complete system,
including the app being executed. These traces are then post
processed via a cache and memory hierarchy simulator for
understanding the application’s memory behavior, as well as
exploring the range of memory architectures using DRAM
and NVMs. This tool, unlike QSim, supports both 32 and

Poster Presentation MobiCom’18, October 29–November 2, 2018, New Delhi, India

775



(a) Different components for tool flow
(b) QEMU code structure (c) Modified QEMU
code

Figure 1: Proposed Tool Flow

64-bit versions of ARM ISA. The tool consists of two mod-
ules: the Tracer Module and Memory Simulation Module.
Figure 1a describes the flow of the tool. Next, we describe
the functionalities of each of these modules.

4.1 Tracer Module
Every computer program on execution gets converted to
assembly instructions before getting converted to machine
code. The main purpose of the tracer module is to generate
a comprehensive trace of all instructions executed by the
emulator, including memory accesses, branch instructions,
arithmetic instructions etc. The traces include the instruc-
tions executed by the app, as well as the OS.

Figure 1b shows the general workflow of QEMU. The guest
instructions, executing within the emulator, are translated to
an intermediate representation called TCG Operations using
a function called gen_intermediate_code() . This interme-
diate representation is then translated to the host instructions
by yet another function tcg_gen_code() [3].Wemodify this
codepath to derive the traces, as depicted in Figure 1c. Dur-
ing translation of guest instructions to TCG operations, the
control is passed to a new function, target_disas() which
disassembles the instruction. This calls print_insn() to
redirect the decoded instructions to a trace file.

4.2 Memory Simulation Module
The generated traces are then fed to the cache simulation
module, for exploration of on-chip cache hierarchies. The
memory simulation module (MSM) takes as input a configu-
ration file that describes the cache hierarchy. For example,
for each level, it specifies the size, associativity, line size,
replacement policies etc. among other things. The configura-
tion file also specifies the relationships between the different
levels of the hierarchy. Currently, every instruction in the
trace, other than a memory instruction is ignored by MSM.
At the end of the run, the cache simulation module of

the MSM provides two things (i) statistics about the cache

characteristics like hit rate, cachemisses, etc., and (ii) another
trace file that can be fed to a main memory simulator (MMS).

5 CONCLUSIONS AND FUTURE PLANS
We present the design of META, a trace based tool for rapid
exploration of memory hierarchies in Android based mo-
bile devices, comprising of trace generation, cache hierar-
chy and main memory simulation modules capable of mod-
eling DRAM, and non-volatile memory technologies like
PCM and STT-RAM, by integrating already existing tools [9].
META will be able to carry out rapid analyses of the main
memory design space for both conventional (DRAM), non-
conventional (PCM, STT-RAM etc.) and hybrid / heteroge-
neous memory systems for handheld devices.

ACKNOWLEDGMENTS
This research is supported in part by SERB grant ECR/2017/000887

REFERENCES
[1] 2017. Android - History. https://bit.ly/2hglRnB
[2] 2018. Android 8.0 Features and APIs. https://bit.ly/2Mq7iy0
[3] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.

In Proceedings of USENIX ATC.
[4] Nathan Binkert et al. 2011. The Gem5 Simulator. SIGARCH Comput.

Archit. News 39, 2 (Aug. 2011).
[5] Aaron Carroll and Gernot Heiser. 2013. The Systems Hacker’s Guide

to the Galaxy Energy Usage in a Modern Smartphone. In APSYS.
[6] Raman Chitkara. 2012. Mobile Technologies Index Memory: The ever-

predictable DRAM path. https://pwc.to/2LpCFsd
[7] Kersey Chad D et al. 2012. A universal parallel front-end for execution

driven microarchitecture simulation. In Proceedings of RAPIDO.
[8] Minho Ju et al. 2016. MofySim: A mobile full-system simulation frame-

work for energy consumption and performance analysis. In ISPASS.
[9] Poremba Matthew et al. 2015. Nvmain 2.0: A user-friendly memory

simulator to model (non-) volatile memory systems. IEEE CAL 14, 2
(2015).

[10] Chidambaram Nachiappan et al. 2014. GemDroid: A Framework to
Evaluate Mobile Platforms. In Proceedings of SIGMETRICS.

[11] V. J. Reddi, H. Yoon, and A. Knies. 2018. Two Billion Devices and
Counting. IEEE Micro 38, 1 (January/February 2018), 6–21.

[12] Ali Saidi and Andreas Sandberg. 2012. gem5 Virtual Machine Acceler-
ation. https://bit.ly/2PplipV

Poster Presentation MobiCom’18, October 29–November 2, 2018, New Delhi, India

776

https://bit.ly/2hglRnB
https://bit.ly/2Mq7iy0
https://pwc.to/2LpCFsd
https://bit.ly/2PplipV

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Related Work
	4 Design of META
	4.1 Tracer Module
	4.2 Memory Simulation Module

	5 Conclusions and Future Plans
	Acknowledgments
	References



