
Rethinking Design Metrics for Datacenter DRAM
 Manu Awasthi

Samsung Semiconductor, Inc.
601 McCarthy Blvd., Milpitas, CA
manu.awasthi@ssi.samsung.com

ABSTRACT

Over the years, the evolution of DRAM has provided a little

improvement in access latencies, but has been optimized to

deliver greater peak bandwidths from the devices. The

combined bandwidth in a contemporary multi-socket server

system runs into hundreds of GB/s. However datacenter

scale applications running on server platforms care largely

about having access to a large pool of low-latency main

memory (DRAM), and in the best case, are unable to utilize

even a small fraction of the total memory bandwidth. In this

extended abstract, we use measured data from the state-of-

the-art servers running memory intensive datacenter

workloads like Memcached to argue for main memory

design to steer away from optimizing traditional metrics for

DRAM design like peak bandwidth so as to be able to cater

the growing needs to the datacenter server industry for high

density, low latency memory with moderate bandwidth

requirements.

Keywords

DRAM, memory, performance metrics, datacenters.

1. INTRODUCTION
A large fraction of user-facing, web based services that are

in use today, rely on backend datacenters. These

datacenters host a multitude of user-facing applications,

with each of these applications servicing millions of users,

concurrently. In order to support the latency and throughput

requirements of these applications, the application relies on

a number of helper applications and services. For example,

an application might be based primarily on servicing users

by querying a NoSQL database, but in order to effectively

service all users within reasonable time, the application will

require the support of web serving, load balancing and data

caching services, among others. In order to display targeted

products or advertisements to each user, the services of a

(probably Hadoop based) data analytics engine [3] might

also be required. Hence, in order to effectively run one full-

fledged user facing application, services of four or five

distinct ``supporting’’ applications might be required.

Each one these applications and services has a distinct set

of characteristics which requires the server hardware and

software design to be optimized for the particular use case

under consideration. Hence, in order to support the varying

needs of these complex, distributed applications, the

datacenter is divided into multiple tiers of servers – each

tier configured specifically for a class of applications or

services. Each of these services has distinct requirements in

terms of hardware and software support. For example, a

typical datacenter that supports web 2.0 style applications

might have five to six different tiers of servers [3]. A

number of studies have characterized applications running

on each of these tiers. All studies confirm two theories (i)

all datacenter applications are memory and I/O intensive,

with very few of them being compute intensive, and (ii) raw

compute almost never becomes the bottleneck for any of

these applications – the bottlenecks appear elsewhere in the

system before compute does.

2. DATACENTER APPLICATIONS
Since datacenter applications service large number of users,

one of the important metrics that needs to be optimized,

especially from a user’s perspective, is service latency. An

important class of applications that are critical for achieving

low service latencies across users, types and sizes of request

sizes, are in-memory key-value (KV) stores. Primary

examples of such applications are Memcached and REDIS

[3]. Architecturally, the datacenter tier running the in-

memory KV stores typically comprises of a number of

servers that form a distributed, shared-nothing, caching tier

between the web-service frontend and the server tier that

runs the database (or a data store) service. The main

responsibility of this tier is to cache the most recently

accessed pieces of data (hot data) in the server’s DRAM. In

the absence of this caching tier, the end user will experience

very high service latencies because all the requests will be

redirected to the servers running the data store service.

Servicing those requests will involve retrieving data from

the server’s disk/storage, leading to larger access times.

Moreover, increased load on the data servers leads to

increased queuing delays, further exacerbating the service

latency problem. Hence, as the number of users increases,

the role of the in-memory caching tier becomes increasingly

important to meet the service level agreements/requirements

(SLAs/SLRs) for the services under consideration. Similar

to KV stores, applications at other tiers of the datacenter

also require access to DRAM, although, after a certain

point, the applications are not sensitive to DRAM [3, 4, 5].

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work

must be honored. For all other uses, contact the Owner/Author. Copyright is held by

the owner/author(s).

MEMSYS '15, October 05-08, 2015, Washington DC, DC, USA

ACM 978-1-4503-3604-8/15/10.

http://dx.doi.org/10.1145/2818950.2818973

Some of our previous work in this regard [3] characterized

the most popular application for each server tier. Of all the

applications that were considered, the success of in-memory

KV caches depends on availability of a large pool of low

latency, high density main memory, the role of which has

traditionally been fulfilled by DRAM.

3. THE METRICS OF OPTIMIZATION
The in-memory KV cache requires large quantities of

DRAM for successful operation. Using the YCSB

framework, we characterized Memcached on state of the art

Intel servers for a large number of use cases [3]. The

performance was measured using a combination of two

metrics – 99
th

 percentile response rates on the client side, as

well as cache hit rates on the server side. Two results, as

depicted in Figure 1, stood out. Firstly, Memcached

performance (per-server cache hit rate) is very sensitive to

available DRAM capacity. The application consumes all

DRAM capacity that is allowed to allocate. Secondly, per

server (and hence, by association, user level) performance

of Memcached is almost independent of available DRAM

bandwidth on the server. Our test setup had two sockets

with four channels (to DDR3 RDIMMs), capable of

delivering 12.8 GB/s per channel. Overall, the system was

capable of delivering 102.4 GB/s of peak DRAM

bandwidth. In the best case scenario, bandwidth utilization

peaked at ~9% of peak. This was observed in cases where

large chunks of data (values) were being requested from the

cache. In experiments with smaller request sizes, the

bandwidth utilization fell even further.

We also experimented with the DRAM capacity and

bandwidth requirements of applications at different tiers.

Irrespective of the application under consideration and the

use case that it was subjected to, the bandwidth utilization

never went beyond 35%. However, almost all applications

were sensitive to DRAM capacity.

4. DISUSSION AND CONCLUSIONS
Over the years, commodity DRAM (DDR2, DDR3, DDR4

etc.) has been optimized for (i) low latency, (ii) high

bandwidth, and (iii) low cost/bit. During the course of time,

latter two have taken over the former as first order design

constraints. If we track changes in absolute values of these

parameters over different generations of DRAM, we find

that although peak DRAM bandwidth has increased by over

20x, absolute latencies have only decreased by a few

percentage points [6]. The current contenders for future

DRAM architectures and standards including Wide I/O,

HBM, and HMC have made significant strides in furthering

the state of the art in DRAM technology. However, even

with the breakthroughs in process technologies and 3D

stacking, very little attention has been paid to

fundamentally rethink the design metrics that server DRAM

should be optimized for, especially given the changing

requirements of applications.

In this paper, we argue that for designing datacenter - class

main memory/DRAM, we need to refocus our energies on

metrics that matter for the application class under

consideration. Using the case of in-memory KV stores as an

example, we show that the need of the hour is to stop

optimizing the next generation DRAM architectures for

delivering higher bandwidth, but rather concentrate our

energies on designing high capacity, low latency DRAM,

while providing moderate bandwidth provisioning for the

system.

5. REFERENCES
[1] Kanev, Set al., Profiling a warehouse scale computer. In

Proceedings of ISCA, 2015.

[2] Kozyrakis, C., Kansal, A., Sankar, S. and Vaid, K., Server

Engineering Insights for Large-Scale Online Services Micro, IEEE

vol.30, no.4, pp.8,19, July-Aug. 2010.

[3] Awasthi, M., Suri, T., Guz, Z., Shayesteh, A., Ghosh, M., and

Balakrishnan, V. System-Level Characterization of Datacenter

Applications. In Proceedings of ICPE, 2015.

[4] Z. Ren, X. Xu, J. Wan, W. Shi, and M. Zhou. Workload

characterization on a production Hadoop cluster: A case study on

Taobao. In Proceedings of IISWC, 2012.

[5] T. Rabl, et al. Solving big data challenges for enterprise application

performance management. Proc. VLDB Endow., 5(12):1724–1735,

2012.

[6] Lee, D. and Kim, Y., and Seshadri, V., and Liu, J., and

Subramanian, L., and Mutlu, O., Tiered-latency DRAM: A low

latency and low cost DRAM architecture. In Proceedings of HPCA,

2013

Figure 1. Left DRAM Capacity utilization, Right – DRAM Bandwidth utilization for Memcached, 4 MB value sizes, 99% read traffic

