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Abstract—New benchmark suites are constantly being released,
with each one providing a much larger set of benchmarks, rep-
resenting an ever-growing variety of workloads. Contemporary
workloads are increasingly more complex in their computational
and memory footprints. Most computer architecture research is
based on the ability of researchers to simulate novel ideas with a
variety of workloads representing the domain being researched.
However, bigger and complex benchmarks suites have made it
extremely impractical to simulate complete benchmarks from
start to finish. As a result, architects are becoming increasingly
dependent on statistical sampling techniques like SimPoints,
which identify long, repetitive execution phases in benchmarks,
and limit simulations to a few instances of these phases. These
techniques present an inherent trade-off between simulation
speed and accuracy.

This work presents results and insights for determining the
accuracy of simulation points for the SPEC CPU2017 suite, using
Pin and PinPoints, which is an implementation of SimPoints
for the x86 ISA. Our analysis concludes that carefully chosen
simulation points faithfully represent the workload; we observe
<1% variance in the instruction distribution between full runs
and the ones using SimPoints, while reducing simulation time
by ∼750×. We also show that on average, just 12 phases
can faithfully represent the 90th percentile of a benchmark’s
behavior, which can help reduce the overall simulation time by
up to ∼1297×. In addition, using performance statistics with
native binaries on real hardware and from an architectural
model of the same machine using SimPoints, we report good
co-relations between the two on metrics such as CPI. Finally,
we present cases like memory hierarchy explorations, where
SimPoints should be used judiciously and with extreme caution
in order to derive correct conclusions – inappropriately chosen
SimPoint configurations can show large deviations in memory
hierarchy behavior as compared to full runs, as reported by
prior studies.

Index Terms—Statistical Sampling, Simulation Points, SPEC
CPU2017, Workload Characterization

I. INTRODUCTION

Computer architecture exploration is based on the ability of
architects to analyze contemporary workloads for bottlenecks
and then propose and evaluate architectures to alleviate said
bottlenecks. Traditionally, a number of workloads are bundled
together, and are provided in the form of standardized bench-
mark suites. Over the years, a number of such suites have
been made available to architects. Of these, the ones being
put out by the Standard Performance Evaluation Corporation
(SPEC) are arguably the most well known, as well as the
most popular ones. They are used for exploratory studies
ranging from pipeline optimizations to cache design, all the

way to evaluating main memory architectures. SPEC has been
releasing a new version of their benchmark suite every few
years, since 1992.

In the last decade, computer system architecture as well
as characteristics of real world applications have undergone
tremendous changes. To keep up with technological advance-
ments and cover the scope of emerging applications, SPEC
CPU2017 has very recently been introduced [1]. This suite is
a major upgrade over SPEC CPU 2006 [2]: new benchmarks
have been added and existing workloads in the suite have been
changed to have significantly larger dynamic instruction counts
and data footprints than both the earlier versions - CPU2006
and CPU2000 [3].

Increase in the numbers and footprints of workloads in a
suite is both a boon and a bane for computer architects, who
depend on architectural simulations to evaluate novel ideas.
Increase in the dynamic instruction count and working set sizes
have led to extremely large run times for simulating contem-
porary architectures. Modeling future architectures, ones with
larger core counts, deeper cache hierarchies and specialized
compute elements is bound to increase simulation times even
further. As an example, GEM5 and MARSSx86, two very
popular architectural simulators in the full system simulation
mode, provide a simulation speed of about 200 KIPS. On
the other hand, simulators likes ZSim and Sniper, which only
simulate a workload’s user level behavior are a little faster
and can execute a simulated machine at 20 and 2 MIPS,
respectively [4], [5].

To keep the simulation times in check, researchers often
utilize approaches like statistical sampling of workloads. Sher-
wood et al. [6] were the first to propose one such technique,
termed SimPoints (short for simulation points) for speeding
up architectural simulations. SimPoints provide a mechanism
for reducing execution time of workloads without incurring
significant errors. The technique takes advantage of repetitive
phases of execution in a workload, which, when simulated
individually, would suffice to mimic the workload’s behavior.
Furthermore, since the method of identifying long, repetitive
phases of a workload is independent of the ISA, phases
identified by SimPoints hold valid for any ISA.

In this work, we apply the SimPoints statistical sampling
methodology to SPEC CPU2017 and come up with a number
of interesting observations. We use these observations to
propose a few best practices, which if not followed, might



lead to incorrect conclusions. The main contributions of the
paper are enumerated below.

• We carry out a detailed design space sweep for determin-
ing possible simulation points/phases for SPEC CPU2017
benchmarks and come up with an optimal number of 35
phases and 30 million instructions per phase being able to
represent the behavior of all considered workloads. This
detailed sweep is necessary for determining optimized
SimPoint configurations that will help reduce some of
the discrepancies in metrics like cache miss rates (as
compared to full benchmark runs) which have been
observed in prior studies [7].

• We show that, using SimPoints, we can simulate the
benchmarks ∼750x faster and with ∼650x less instruc-
tions, as compared to whole benchmark simulation.

• We show that if SimPoints are well chosen, there exists
extremely good correlation between the instruction dis-
tributions obtained from native runs of benchmarks and
those identified by the SimPoint methodology, with an
error rate of less than 1% between the average of two,
across the entire benchmark suite.

• We show that there exist inherent trade-offs between
simulation speed and simulation accuracy along certain
axes, especially memory hierarchy simulation, for which
special care needs to be taken, if simulation is done using
SimPoints. Variations in results using SimPoints can be
reduced if appropriate mitigation techniques (like cache
warming before each phase) are used. If this is not done,
exploration of memory hierarchies using SimPoints can
lead to incorrect design choices.

• We verify the accuracy of simulation of SimPoints driven
workloads against performance counter data obtained
from real hardware using native execution of workloads,
and show that for well chosen SimPoints, there exists
good co-relation between the two – the difference in
average CPI for a workload between the two methods
being 2.59%.

• We show that, on an average across the benchmark
suite, 12 representative phases of a SPEC CPU2017
benchmark are able to capture 90% of the workload’s
overall behavior, leading to greatly reduced simulation
speeds - up to ∼1297× as compared to whole benchmark
simulation.

The rest of the paper is organized as follows. Section II gives
a background of SPEC CPU2017 benchmarks and PinPlay.
Section III describes the methodology to create the simulation
points of these benchmarks. Section IV discusses the accuracy
of characterization of the benchmarks using simulation points.
Finally, we discuss the related work in Section V and conclude
in Section VI.

II. BACKGROUND

A. SPEC CPU2017
SPEC CPU is a widely acknowledged suite of compute

intensive benchmarks, which tests processor’s, memory sys-
tem’s and compiler’s performance. A number of versions

of SPEC have been released over the years, with the latest
version, released in 2017, and aptly named, SPEC CPU2017.
CPU2017 [1] considers state-of-the-art applications, organiz-
ing 43 benchmarks into four different classes: 10 speed integer
(SPECspeed INT), 10 rate integer (SPECrate INT), 10 speed
floating point (SPECspeed FP) and 13 rate floating point
(SPEC rate FP). The speed and rate suites vary in workload
sizes, compile flags and run rules. SPECspeed measures
the time for completion by running a single copy of each
benchmark, with an option of using multiple OpenMP threads.
Hence, speed is a measure of single instance performance, typ-
ically measured by metrics like IPC (Instructions Per Cycle).
On the other hand, SPECrate measures the throughput of the
overall chip, with possibly multiple cores, by running multiple,
concurrent copies of the same benchmark with OpenMP
disabled. Most applications have both rate and speed versions
(denoted by _r and _s, respectively), except for namd, parest,
povray and blender, which only have the rate versions, and
pop2, which only has the speed version. Similar to SPEC
CPU2006, SPEC CPU2017 has been provided with three input
sets: test (to test if executables are functional), train (data for
feedback-directed optimization), and ref (timed data set).

In the current iteration, many new benchmarks have been
included to cover emerging application domains. In INT
category, artificial intelligence (AI) has been extensively repre-
sented with three new benchmarks, namely deepsjeng (alpha-
beta tree search & pattern recognition), leela (Monte Carlo
tree search, game tree search & pattern recognition) and ex-
change2 (recursive solution generator). Two data compression
benchmarks, xz (general data compression) and x264 (video
compression), have been also added. In the FP category, nine
new benchmarks have been added: parest implements a finite
element solver for biomedical imaging; blender performs 3D
rendering; cam4 (atmosphere general circulation modeling),
pop2 (climate modeling) and roms (regional ocean modeling)
represent the climatology domain; imagick is an image manip-
ulation application; nab is a floating-point intensive molecular
modeling application representing the life sciences domain;
fotonik3d (computational electromagnetics) and cactuBSSN
(general relativity) represents the physics domain.

B. Pin and PinPlay

a) Pin: Pin [8] is a dynamic binary instrumentation
framework for the IA-32 and x86-64 instruction sets. It pro-
vides a rich set of APIs that can be used to study various
characteristics of program behavior at the ISA level. Since Pin
dynamically instruments programs, a technique which inserts
extra code into an existing application to collect run time
information and runs at native execution speeds, it provides
orders of magnitude of speedup over a functional simulator.
Using APIs provided by Pin, multiple tools have been created
for studying multiple characteristics of different programs.
Example of such tools include inscount0 (dynamic instruction
counter), ldstmix (dynamic register/memory operand pattern
profiler), allcache (functional simulator of instruction+data
TLB+cache hierarchies), logger (records execution traces)



and replayer (replays the logged execution traces). Most of
these tools, which are shipped as a part of the Pin software
distribution, were used actively in this study.

b) Pinballs: Pinball [9] is a user-level checkpoint format
of a program’s execution, which can be loaded and executed
to recreate that particular execution. A Pinball is created and
consumed using a Pin based framework called PinPlay [10].
PinPlay consists of two Pintools: (i) a logger that captures the
initial architectural state and non-deterministic events during
a program’s execution in a set of files which are collectively
called a Pinball; and (ii) a replayer that runs a Pinball, re-
peating the captured program’s execution. The replayer can be
executed with Pintools dynamically instrumenting the Pinball
or can be integrated with a Pin-based simulator allowing
simulations based on Pinball(s) instead of a binary. A Pinball
can be created for the execution of the entire program or for a
part of execution. A large Pinball of whole execution can be
broken down into a number of smaller regional Pinballs. This
allows users to work with (run or simulate) either the entire
workload, or a portion thereof.

Using Pinballs instead of complete binaries has the advan-
tages of being independent of the operating system, reduction
in data+code footprint as compared to native binary and data
sets, as well as reduction in non-determinism of the program.
Also, since Pinballs are self-contained, to include all the
information that is needed for the program’s execution, the
program binary, input files and special licenses are not needed
during replay. In general, the logging is 100-200× slower [11]
as compared to native execution, which results in extremely
long times for creating them. However, the increased ease of
portability, once Pinballs have been captured, outweighs the
one time overheads of creating the Pinballs.

c) PinPoints: Pin + SimPoints: Modern processors are
highly intricate and detailed; cycle-accurate simulation of
such systems is extremely slow, hence computer architects
depend on simulation methodologies that use statistical sam-
pling to capture program behaviors. In this work, we use
SimPoints [12], a mechanism of statistically sampling similar
phases in an execution to remove redundancies in execution
behavior, resulting in reduced simulation times. A typical pro-
gram’s behavior follows a number of long repetitive behaviors,
called phases [13]. SimPoints provides a means of identifying
and isolating these unique slices (or phases) by dynamically
slicing the execution trace into smaller, equal sized chunks
and grouping similar slices together. Grouping is done by
creating Basic Block Vectors [14] (BBVs) of each slice and
forming a cluster of BBVs which are close to each other. The
degree of closeness is determined by a set of architectural
metrics, namely performance, branch misprediction, cache
misses, etc [15]. Since the behavior of the program at a
given time is directly related to the code executed during that
interval, slices grouped under the same cluster are expected to
have similar behaviour [14], [16]. K-means clustering [17] is
employed to form clusters of similar slices. A number of slices
may exist within the cluster. However the slice closest to the
average behaviour of that cluster is chosen as the cluster’s

Fig. 1. SimPoints procedure

Fig. 2. SimPoints methodology using PinPoints

representative phase and is called a simulation point. The
number of slices in each cluster determines its weight which
represents the contribution of that simulation point towards the
whole program. Higher weight would imply that the phase gets
executed more frequently. Inclusion of all simulation points,
along with their weights may be used to predict the behavior of
the program. This procedure is depicted in Figure 1. Accuracy
of SimPoints methodology depends on many factors, two of
the most important ones being the number of instructions in
the slices, also known as slice length, and MaxK value of the
clustering algorithm, which represents the maximum number
of clusters. Large slices may fail to capture certain short-lived
phase behaviors, but can generate reasonably accurate results
without the need to warm up the caches. Reduction in the slice
length makes each simulation point susceptible to errors due
to cold cache misses, but will identify, possibly more phases
of shorter durations, leading to better simulation accuracy.
Similarly, a large enough MaxK value needs to be selected
to avoid compromising the selection of simulation points.

PinPoints [18] use SimPoints with Pin to analyze the
dynamic instruction trace of the program and identify simu-
lation points. In this work, we create checkpoints of program
execution (Pinballs) using PinPlay’s logger tool, and generate



TABLE I
ALLCACHE SIMULATOR CONFIGURATION

L1i 32-way, 32kB, 32B linesize
L1d 32-way, 32kB, 32B linesize
L2 Unified 2MB direct-mapped, 32B linesize
L3 Unified 16MB direct-mapped, 32B linesize

checkpoint of whole benchmark execution (Whole Pinballs),
which are then used as inputs to PinPoint for generation of
checkpoints of simulation points (Regional Pinballs) and their
weights. The entire flow of the experimental methodology
followed in this work is depicted in Figure 2. The Regional
Pinballs can be directly run with the replayer pintool to report
statistics.

III. METHODOLOGY

SPEC CPU2017 benchmarks are compiled using gcc com-
piler with SPEC recommended optimization flags, for ref-
erence input size. Speed workloads are compiled to use 4
OpenMP threads, while the rate workloads were executed
with a single instance of the benchmark. The experimental
methodology for identifying simulation points and creating
checkpoints or Pinballs is depicted in Figure 2. As observed
from the figure, the compiled binaries are used to create Whole
Pinballs, using PinPlay’s logger tool. This is an extremely
slow process and results in a 100-200× execution slowdown,
as also reported in previous studies [11]. Some benchmarks
of the suite, especially ones belonging to Floating Point sub-
suite, couldn’t complete this process in a very long time. For
example, on a Intel(R) Xeon(R) CPU E5-2650, 2.00GHz, with
32kB, 8-way L1I/L1D caches, 256kB 8-way L2 cache, and a
unified, 20MB 20-way L3 cache, checkpointing bwaves_s took
more than a month of computation time. As a result, in this
work, we present a subset of the complete benchmark suite,
and keep the rest for future work. Finally, we use the Whole
Pinballs to create Regional Pinballs, as mentioned in previous
sections. With the discussion about tools, we now present some
of the insights that we have gathered with multiple types of
experiments.

IV. RESULTS AND DISCUSSION

A. MaxK and Slice Size

Since the accuracy of simulation points and hence the
characterization of CPU2017 depends largely on the number of
clusters of phases that are allowed (value of MaxK), and slice
size, which is the number of instructions per phase, we create
simulation points for varying values of MaxK and slice sizes
while keeping the other one constant. We then compare the
two in their ability to match results of complete runs. These
experiments are used as the basis for deciding the optimal
values to profile benchmarks using PinPoints for the rest of
this paper. In addition, this sweep helps explore the various
tradeoffs associated with choosing different values of the two
variables. Figures 3(a) and 3(b) present the results of the de-
sign space sweep for MaxK and slice sizes for one benchmark,

TABLE II
SPEC CPU2017 SIMULATION POINTS

Benchmark
Number of
Simulation

Points

Number of
90 percentile

Simulation Points
500.perlbench_r 18 11
502.gcc_r 27 15
505.mcf_r 18 9
520.omnetpp_r 4 3
525.x264_r 23 15
531.deepsjeng_r 20 15
541.leela_r 19 12
548.exchange2_r 21 16
557.xz_r 13 7
600.perlbench_s 21 13
602.gcc_s 15 5
605.mcf_s 28 14
620.omnetpp_s 3 2
623.xalancbmk_s 25 19
625.x264_s 19 13
631.deepsjeng_s 12 10
641.leela_s 20 13
648.exchange2_s 19 15
657.xz_s 18 10
503.bwaves_r 26 7
507.cactuBSSN_r 25 4
508.namd_r 26 17
510.parest_r 23 14
511.povray_r 23 19
519.lbm_r 22 8
526.blender_r 22 14
538.imagick_r 14 7
544.nab_r 22 10
549.fotonik3d_r 27 11
Average 19.75 11.31

xalancbmk_s. Due to lack of space, we are unable to provide
experimental data from all considered benchmarks. However,
the conclusions derived from this data point remain largely
consistent across all the benchmarks under consideration.

We compared different values of MaxK and slice size using
two main metrics - instruction mix and cache miss rates for
an arbitrary cache hierarchy, defined in Table I. These metrics
were calculated using the ldstmix pintool and the allcache
simulator, respectively. The instructions are broken down into
four different categories - memory reads (MEM_R), memory
writes (MEM_W), memory read and writes (MEM_RW)1 and
everything else (NO_MEM). The MaxK value was varied from
15 to 35 in steps of 5. We experimented with slice sizes
of 15, 25, 30, 50 and 100 million instructions. These runs
were then compared against the full run (without statistical
sampling). Figure 3(a) provides a relative comparison between
these experiments across metrics under consideration while
varying MaxK, whereas Figure 3(b) provides the same for
varying slice sizes, while keeping the MaxK constant at 35.
As can be observed, for smaller values of MaxK, there are
significant variations between the instruction distributions as
compared to the full run. Since a benchmark can have many
representative phases and by selecting a small MaxK, we

1Memory-to-memory instructions like movs in x86 account for MEM_RW
instructions.



(a) Accuracy while varying MaxK, for xalancbmk_s. (b) Accuracy while varying Slice size, for xalancbmk_s.

Fig. 3. Sensitivity analysis of MaxK and Slice Size, depicted for xalancbmk_s.

Fig. 4. Average Variance in phase similarity among each cluster for varying number of clusters, depicted for each benchmark.

force the sampling mechanism to compromise its selection
of representative points. This results in larger variations.
We observe that most SPEC CPU2017 benchmarks, do not
need more than 35 clusters to capture all the phases of the
benchmark. Table II compiles the results of these experiments
- all benchmarks have number of simulation points that are
well below the chosen maximum value of 35.

As discussed in Section II, a number of phases may exist in
a cluster but the one with behaviour closest to the average
behaviour of all phases in that cluster, is chosen as the
simulation point. However, phases deviating from this average
behaviour might not be perfectly represented by the respective
simulation point. A measure of how far this deviation stretches,
termed variance, also determines the number of simulation
points that are selected. Forcing a low number of clusters
reduces the number of unique behaviours that can be captured.
This phenomenon is illustrated in Figure 4, where we show
the average variance in similarity among the cluster’s phase
behaviors, for most of the benchmarks from the suite. As
expected, it can be seen that as number of available clusters
decrease, the phases try to adjust themselves within these
clusters at the expense of accuracy.

With the MaxK value at 35, we sweep across multiple values
of slice lengths. In Figure 3(b), we observe that small slice
sizes have very large deviations from the full run, especially
with respect to cache miss rates, even though the percentage
distribution of memory instructions doesn’t change much.

We believe that this is caused by the reduced number of
overall memory accesses in the statistical samples, leading
to increased cold cache effects. As a result, there is a large
variation in the miss rates of caches that are further away from
the processor. This is confirmed by the fact that increasing the
slice length leads to dramatic reductions in the L3 cache miss
rates, bringing them much closer to the ones for full run. We
select 30 million slice size, which might augment the cold
cache effect, but also helps capture the effect of short-lived
phases; hence contributing to the accuracy.

B. Whole v/s Regional Pinball Run

Next, building upon the optimal values of MaxK and slice
size derived in Section IV-A, we profile the benchmarks using
PinPoints. PinPoints generates the checkpoints (also referred to
as Pinballs) of simulation points and their respective weights.
As was described previously in Section II, these checkpoints
are termed as Regional Pinballs, and their execution as Re-
gional Run. Figure 5(a) & 5(b) depict the dynamic instruction
count and execution time, respectively, of Whole and Regional
Runs of the benchmark suite. PinPoints methodology is able
to create checkpoints of the SPEC CPU2017 benchmark suite
with ∼650× reduction in the number of executed instructions.
Across the benchmark suite, on an average, the number of
executed instructions are reduced from 6873.9 billion to 10.4
billion. Consequently, the average execution time of single
benchmark dropped from 213.2 hours for the Whole Run to



(a) Dynamic Instruction Count (b) Execution Time

Fig. 5. Comparison of Whole Run, Regional Run and Reduced Regional Run in terms of Dynamic Instruction Count and Execution Time.

Fig. 6. Weight of each simulation point of the benchmarks.

17.17 minutes for the Regional Run – a ∼750× reduction in
run time. Architectural experiments generally require longer
runs demanding a significant amount of time. Using Regional
Pinballs can provide a solution by offering significantly re-
duced simulation time.

C. 90th Percentile Simulation Points

While programs may have a large number of phases, many
have only a few dominant ones. We analyze the weights
associated with the phases / simulation points 2 to get insights
into the nature of phase behavior. In Figure 6, we present
the weights associated with different phases in the workload.
Each stacked bar in the figure represents a benchmark, divided
into sub-bars representing its simulation points. The height
of each of the sub-bars represents the weight of a particular

2We use phases and simulation points interchangeably in the rest of this
discussion.

phase. The number of sub-bars represent the number of phases
in the benchmark. Most programs have less than 25 overall
simulation points, with only 5 programs exceeding that value.
This observation is also tabulated in the second column of
Table II. A higher weight of a simulation point would imply
that the program spends a larger fraction of time in executing
that phase. For example, 503.bwaves_r has one dominant sim-
ulation point that accounts for 60% of the overall execution,
and three highest weighted simulation points, together account
for 80% of the program’s execution, indicating a low diversity
in benchmark behavior. On the other hand, benchmarks like
631.deepsjeng_s, 648.exchange2_s and 511.povray_r have a
fairly regular distribution of weights, and would need more
number of simulation points for accuracy. Certain benchmarks
like 503.bwaves_r, 507.cactuBSSN_r, 519.lbm_r have many
simulation points with almost insignificant weights. While
their existence indicates some diversity in the benchmark’s
behavior, they do not significantly contribute to the overall
execution profile. Hence, such benchmarks can be simulated
accurately with a small number of simulation points. To verify
this hypothesis, we compare the total number of simulation
points to the number of simulation points contributing to 90%
of the execution. This is done by sorting the simulation points
in the descending order of their weights, and then selecting
them until the total sum of weights adds up to 0.9 (out of
a total of 1.0). This is pictorially represented by a dashed
line in Figure 6. As a result of this optimization, the average
number of simulation points for a benchmark drops from 20
to 12, as depicted in the third column of Table II. We term
execution these simulation points as Reduced Regional Runs.
Considering only the 90th percentile simulation points has a
huge impact on run times; reduction of dynamic instruction
count by 1225× and simulation time by 1297× as compared
to Whole Run, as depicted in Figure 5. Across the entire
suite, compared to Regional Runs, Reduced Regional Runs
execute 1.743× less instructions and reduced simulation time
by 1.741×. Similarly, one can further reduce the number of
simulation points leading to smaller execution times. Since
many simulation points have insignificant weights, they can



be eliminated with a little trade-off in accuracy.

D. Comparison of Whole, Regional and Reduced Regional
Runs

Next, we determine the accuracy of simulation points in
representing the benchmark by replaying Whole, Regional and
Reduced Regional Pinballs using Pintools for profiling. These
experiments aim to compare the ability of the Regional and
Reduced Regional Pinballs to represent the original workload.
As before, we compare these three along two main axes -
instruction distribution and cache miss rates. We use ldstmix
and allcache Pintools for these set of experiments, which re-
port instruction distributions and cache miss rates, respectively.
The configuration of cache hierarchy simulated by allcache is
provided in Table I.

The PinPoints methodology divides the entire execution
into multiple, smaller executions by pointing out simulation
points (Regional Pinballs). The way these simulation points are
executed can report variable statistics. In this study we adopt
the methodology described in [11], [19], where each Regional
Pinball is executed individually with Pintools, and a weighted
average of the statistics reported by each is finally reported.
The weight of a simulation point is the number of times the
phase repeats itself in its cluster, during the full execution,
divided by the total number of phases in all the clusters.
Since each Pinball can be executed independently, these are
executed in parallel to save time. It is also important to note
that the weighted average should be taken only for statistics
normalized by instructions; CPI computation is allowed, but
IPC is not.

Instruction profile for the floating point and integer bench-
marks is distributed into four categories: instructions that do
not refer memory (NO_MEM), instructions that have one or
more source operand in the memory (MEM_R), instructions
whose the destination operand is in memory (MEM_W),
and instructions whose source and destination operands are
in memory (MEM_RW). Figure 7 provides the instruction
distributions for all the three cases. As can be observed,
the percent distributions for each category almost match up
perfectly with that of the Whole Run, which, on average has
49.1% compute-only instructions, 36.7% memory-read and
12.9% memory write instructions. As compared to the Whole
Runs, the errors for both the Regional Runs, as well as the
Reduced Regional Runs are less than 1%. Furthermore, the
Regional Runs executed on the cache simulator, exhibit some
variation in the cache miss rates as compared to the Whole
Runs. The average L1D, L2 and L3 cache miss rates are
0.18%, 0.10%, and 25.16% higher respectively, than that of the
Whole Runs, as shown in Figure 8(a)-(c). L1I has negligible
miss rates in all cases, and does not affect the methodology’s
accuracy in sampling the workloads. The errors in cache miss
rates for the Reduced Regional Runs are very close to those
observed for Regional Runs. As compared to the Whole Run,
we observe that average cache miss rates of the Reduced
Regional Run increased by 2.23%, 0.33%, and 25.53% for
L1D, L2 and L3 caches respectively. Therefore, by simulating

just 12 phases, we can represent the benchmark behavior with
a little trade-off in memory hierarchy simulation accuracy. As
opposed to existing work [7] in determining simulation points
for SPEC CPU2017, which show >30% variation in L1D
miss rate prediction, we show that carefully chosen simulation
points can generate more accurate results.

As discussed in Section IV-C, while applications may have
a large number of phases, only a few of dominant ones among
them contribute significantly to the overall execution profile.
Hence, the other simulation points can potentially be removed
with little inaccuracy, saving execution time. In Figures 5,
7 and 8, we illustrated this trade-off considering simulation
points contributing to 90% of the total weight. However, one
can further reduce the simulation points to achieve smaller
execution times. In Figure 9, we provide a design sweep
analysis of inaccuracies incurred while reducing the number
of simulation points. On y1-axis, we show errors in the con-
sidered metrics compared to the Whole Run, averaged across
the benchmark suite. On y2-axis, we depict the execution time,
while varying the percentile of simulation points considered
for execution on x-axis. As expected, the experiment shows
that as we reduce the number of simulation points, the error
rates go up. Using this analysis, one can judicially choose
the number of simulation points for execution based on their
accuracy/runtime budget.

Apart from LLC miss rates, the PinPoints methodology is
able to maintain the cache behavior. The discrepancy in the
LLC miss rates between the three types of runs is due to
the reduced number of L3 accesses – the overall number of
instructions executed by Regional and Reduced Regional Pin-
balls is smaller as compared to Whole Pinballs. This is clearly
observed in Figure 10, which shows the reduced number of
accesses to L3 cache in the Regional and Reduced Regional
Runs, leading to discrepancies in cache miss rates. As a result,
for memory accesses, Regional or Reduced Regional Runs
might not be the most optimal simulation platform. To alleviate
this, the set of Regional Pinballs must be run multiple times,
thus exercising the LLC to remove the cold cache effects,
or else a larger slice length should be chosen. To verify this
hypothesis, we run each simulation point, with slice size of
30 million, and allow the caches to be warmed up for 500
million cycles before every simulation point starts executing.
We model the cache hierarchy used in Table I in Sniper [20] to
simulate this experiment. We present these results in Figure 8
as Warmup Regional Run. We observe that after alleviating
cold cache effect, the error in average LLC miss rate go down
drastically, from 25.16% to 9.08%. Therefore, we conclude
that Regional Pinballs, executed in proportion to their weights
with reasonable warmup, are capable of representing the
similar behavior of the whole benchmark. However, studies
not taking into account these subtle experimental details are
bound to make inaccurate conclusions.

E. Native Execution v/s Sniper with Simulation Points

Next, we extend the comparison of Whole, Regional and
Reduced Regional Runs for use of a system simulator. We



Fig. 7. Instruction Distribution Comparison of Whole Run, Regional Run and Reduced Regional Run.

(a) L1D Miss Rates (b) L2 Miss Rates

(c) L3 Miss Rates

Fig. 8. Cache Miss Rates Comparison of Whole Run, Regional Run, Reduced Regional Run and Warmup Regional Run, for configurations in Table I.

aim to compare the accuracy of using various mechanisms
of statistical sampling of benchmarks and compare them to
results obtained from real hardware, using perf tool [21]. First,
we run the benchmarks on real hardware - an 3.4GHz, 8-core
Intel i7-3770 with 8 GB RAM and record the most relevant
statistics using native binaries. Then we use an architectural
simulator, Sniper [20], to model the real hardware as faithfully
as possible. Table III presents the configuration of the simu-
lated machine. We then run the Regional and the Reduced

Regional Pinballs within the simulated machine. Finally, we
compare all three to check for inaccuracies that might be
introduced by statistical sampling mechanisms. Since many of
the perf’s symbolic event were not supported on the processor
we had access to, we limit our comparison to CPI, which
is calculated as the ratio of the hardware events cpu-cycles
and instructions. We simulate Regional and Reduced Regional
Pinballs within the simulator to capture CPI information.
Congruence of these two results would signify the accuracy



Fig. 9. Error rates of metrics, compared to Whole Run (y1-axis, Histogram).
Execution time (y2-axis, Linespoint). Results shown are averaged across the
benchmark suite. 100 and 90 percentile executions represent Regional and
Reduced Regional Runs.

Fig. 10. Number of L3 cache accesses by Whole Run v/s Regional Run v/s
Reduced Regional Run, for configuration in Table I.

TABLE III
SYSTEM CONFIGURATION

Model 8-core Intel i7-3770
CPU Frequency 3.4GHz

Pipeline 19 stage Out-of-Order
Fetch Width 6 instructions per cycle

Decode Width 4-7 fused µ-ops per cycle
Rename width and Issue width 4 fused µ-ops per cycle

Dispatch width 6 µ-ops per cycle
Commit width 4 fused µ-ops per cycle
Reorder buffer 168 entries

Branch Reorder Buffer 48 entries
Branch misprediction penalty 8 cycles

L1-I cache & latency 32 KB, 8-way & 4 cycles
L1-D cache & latency 32 KB, 8-way & 4 cycles

L2 cache & latency 256 KB, 8-way & 10 cycles
L3 cache & latency 8 MB, 16-way & 30 cycles

Cache line size 64 Bytes

Fig. 11. Benchmark Execution: Perf v/s Sniper

Fig. 12. CPI of SPEC CPU2017, running natively versus running on Sniper,
for configuration in Table III.

of characterization of SPEC CPU2017 using the PinPoints
methodology on Sniper, to that of a real system execution.
The procedure is depicted in Figure 11.

We compare the CPI values of benchmarks in both ex-
ecutions in Figure 12. It should be noted that these result
also include errors due to non-determinism and execution on
Sniper. The CPI for Regional Pinballs within Sniper correlates
well with that of native execution - an error of 2.59% in
average CPI across all benchmarks was observed. Next, we
validated the accuracy of Reduced Regional Pinballs. As can
be seen from Figure 12, few programs like 507.cactusBSSN_r
are outliers, whose deviation in Regional Runs, as compared to
native execution is extremely large. This divergence increases
for the Reduced Regional Runs. However, for most bench-
marks, the deviation is not very high. Across the entire suite,
as compared to the Whole Run, an average deviation of 13.9%
was observed in Reduced Regional Runs.

V. RELATED WORK

A number of previous studies have generated simulation
points for a variety of benchmark suites. However, to the best
of our knowledge, this paper presents the first systematic study
of the efficacy of applying the SimPoints methodology to the
SPEC CPU2017 suite.

A. SPEC CPU 2017 Characterization

Limaye and Adegbija [22] use hardware performance
counter statistics to characterize SPEC CPU2017 applications



with respect to several metrics such as instruction distribution,
execution performance, branch and cache behaviors. They also
utilize Principal Components Analysis [23] and hierarchical
clustering to identify subsets of the suite. Similarly, Panda
et al. [24] also characterize CPU2017 Speed benchmarks
using perf, and leverage statistical techniques to identify
cross application redundancies and propose subsets of the
entire suite, by classifying multiple benchmarks with similar
behaviors into a single subset. Further, they also provide a
detailed evaluation of the representativeness of the subsets.
Bucek et al. [25] present an overview of CPU2017 suite and
discuss its reportable execution. Wu et al. [7] study the phase
behaviour of the SPEC CPU2017 suite and have publicly
released simulation points for many CPU2017 workloads, as
a part of their research efforts. Further, they have also studied
time-varying application behaviour and correlated it with the
simulation points being considered during those phases. In
contrast, the goal of this work is to evaluate the efficiency
of sampling using simulation points for the SPEC CPU2017
suite. We carry out a detailed design space exploration for
determining best possible simulation points for the bench-
marks. We acknowledge that the benchmark behaviour is a
function of the algorithms being implemented, and could be
a complete study in itself. We refer to [3] for benchmark
behavior which presents a detailed, memory-centric analysis
of workloads from the SPEC CPU2017 suite.

B. Statistical Sampling Techniques

Joshua et al. [26] have evaluated the accuracy and cover-
age of the most promising benchmark subsetting approaches,
including principal component analysis (PCA), k-means clus-
tering, performance bottlenecks, memory characteristics and
instruction distributions, using SPEC CPU2000 benchmarks.
Eeckhout et al. [27] compare accuracy of SimPoints sampling
approach against the technique of selecting representative
benchmarks of a suite as subsets. Shaccour and Mansour [28]
propose a loop-centric methodology that targets loop dominant
programs by exploiting internal program characteristics to
reduce cross program computational redundancies. Wenisch
et al. [29] proposed SimFlex, which enables parallelism in
statistical sampling, reducing sampling time. They also discuss
overcoming practical constraints imposed by simulators, such
as fast-forwarding between the measurements and warming to
eliminate cold-start biases. Hamerly et al. [30] extend Sim-
Points to support variable slice lengths, increasing representa-
tiveness of simulation points. Amaral et al. [31] propose the
Alberta Workloads for the SPEC CPU2017 benchmark suite
in hope to improve the performance evaluation of techniques
that rely on any type of learning, for example the formal
Feedback-Directed Optimization (FDO). Nair and John [32]
were the first to evaluate and validate simulation points for
SPEC CPU2006 and CPU2000 as a method of simulation
acceleration. Interestingly, we note that the average number
of simulation points of the SPEC CPU suites has not varied
significantly through the years, including the CPU2017, as
reported in Table II. These results suggest that even though

there has been orders of magnitude increase in the dynamic
instruction count and the number of memory accesses, the
benchmark suites still are constituted using the same number
of phases. Sandberg et al. [33] propose a simulation method-
ology, Full Speed Ahead, (FSA) which aims to minimize the
overhead of fast-forwarding by using virtualization to fast-
forward the application between the simulation points at near-
native speed. As an alternative, Nikoleris et al. [34] uses
statistical cache modeling and the workload’s memory reuse
information (MRI) [35] to eliminate large cache warming
periods.

VI. CONCLUSION

In this work, we evaluate the accuracy of characterizing the
SPEC CPU2017 benchmarks using SimPoints methodology.
Our analysis shows that architectural simulations using Sim-
Points, with a maximum cluster size of 35 and slice size of 30
million instructions, have very similar instruction distribution
characteristics as Whole Runs – the distribution error is less
than 1%. Using SimPoints, we can reduce the simulation
time by almost ∼750x. However, owing to reduced number
of memory instructions and injudiciously chosen SimPoints,
significant error rates can be observed in cache miss rates for
simulation done using simulation points, which increase for
caches further away from the CPU. We show that these can
be alleviated by using appropriate mitigation techniques like
cache warming and judiciously choosing cluster and slice sizes
after carrying out a comprehensive exploration of the available
options.

We explore the phase behavior of workloads to find the ex-
istence of large, dominant phases which sufficiently represent
the benchmark. We take advantage of this nature to reduce the
number of simulation points to only those contributing to the
90% of the execution. This results in just 12 simulation points,
on average across the suite, representing the benchmarks with
some trade-off in accuracy, but with 1225× reduction in
dynamic instruction count and hence, 1297× reduction in
simulation time. Finally, we compare performance of whole
benchmark execution on native hardware using performance
counters with that of a detailed architectural model of the same
machine using SimPoints. Between the two setups, we observe
an error of 2.59% in average CPI across the benchmark suite.
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