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Abstract—In a large chip, an asynchronous Network-on-Chip
(NoC) is a suitable candidate for establishing an interconnection
network between varied components. Architectural level simu-
lation is an accepted methodology for evaluating such systems.
In this paper, we propose a fast and versatile Asynchronous
Network-on-Chip (NoC) Simulator - ANSim, which brings down
the simulation time by 25×, compared to the state of the art sim-
ulators. It can model and analyze all synchronous, asynchronous,
and mixed synchronous-asynchronous system of cores connected
through NoC. ANSim can model routers with different delays,
routers with asynchronous arbitration, connected in a wide range
of topologies. ANSim supports individual routers modeled to have
varying timing constraints. Further, it supports synthetic and
real-workloads, and produces system-level latency, throughput,
power, power-gating, and arbitration reports. ANSim has been
verified against RTL models of NoCs, and other RTL verified
simulators. An open-source synchronous NoC router, TNoC, and
its asynchronous derivative are used to demonstrate ANSim’s
usefulness and features.

Index Terms—Asynchronous NoC, Simulator, metastability.

I. INTRODUCTION

Modern Systems-on-Chip (SoCs) are an integration of many
heterogeneous modules [1]. Networks-on-Chip (NoCs) facil-
itate communication between these modules [2]. Designing
synchronous NoC for a large number of modules is difficult
due to clock synchronization issues and large clock power
consumption [3], [4]. Asynchronous NoCs are a suitable
candidate in such a scenario, as they don’t rely on clocks
and have lower latency under bursty traffic [4]. Architectural
level simulation is an accepted methodology for evaluating
such systems for different use cases, but simulator support for
asynchronous NoC simulation is partial.

HNOCS [5] is the first heterogeneous and asynchronous
simulator. Ved et al. have proposed PANE [4], a pluggable
asynchronous NoC simulator. They have shown that PANE
has the highest feature set among the same class of simulators
while providing similar runtimes. However, these simulators
still lack critical features (Table I) for correctly modeling and
analyzing asynchronous NoCs for real-world workloads.

To deploy asynchronous NoCs for applications like control
systems, machine learning, media encoding, etc., designers
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TABLE I
COMPARISON OF CLOSEST RELATED WORKS

Feature BookSim HNOCS PANE Proposed
Heterogeneous No Yes Yes Yes
Variability No No Yes Yes
Metastability No No Partial Yes
Design Space +++ + ++ ++++
Real-Benchmarks Yes No Limited Yes
Simulation Time Very Fast Slow Slow Very Fast
Power Gating No No No Yes

need to compare NoCs that are fully synchronous, fully
asynchronous, mixed synchronous and asynchronous, and
heterogeneous. Heterogeneous NoCs are NoCs with routers
with varying timing constraints and can be synchronous or
asynchronous. ANSim models all these cases and reports result
so that design-related decisions can be taken early on in the
design process. ANSim is 25× faster, compared to state of the
art, PANE [4]. It supports both synthetic and real benchmarks.
The tool provides a power estimate of modern NoCs (with
power gating, if possible) for a given configuration. Asyn-
chronous NoCs suffer from arbiter metastability (explained in
Section II), which is also modeled in the tool. Non-blocking
power gating [6] for asynchronous NoCs is modeled in a
simulator for the first time, to the best of our knowledge. The
tool supports routers’ easy modeling with different numbers of
virtual channels (VC), buffer sizes, buffer allocation policies,
routing policies, and arbiters [2] with a single configuration
file.

A. Related Works

A large number of NoC simulators have been proposed in
earlier works. In the synchronous domain, Gem5 [7], Garnet
[8], Multi2Sim [9], BookSim [10] are frequently used for
synchronous NoC simulations, but are not capable of modeling
asynchronous or heterogeneous routers within the same NoC.

HNOCS [5] is the first heterogeneous and asynchronous
simulator and is based on Omnet++ [11]. HNOCS provides the
ability to define the NoC with NED configuration files. Ved et
al. have proposed PANE [4] based on Omnet++ and BookSim.
Table I shows the comparison between existing asynchronous
NoC Simulators and ANSim.

E. Beigne et al. [12] proposed an asynchronous router
architecture and created a software framework to simulate
NoCs with this router.
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Fig. 1. High-Level Design and Asynchronous Router Model of ANSim.

II. SIMULATOR DESIGN

In synchronous NoCs, each action is initiated at a clock
edge, and delays are measured in clock cycles. In asyn-
chronous NoCs, the wall clock needs to be used and is
captured in multiples of the smallest tick, where a tick is the
smallest granularity of time (ps or ns). All timing parameters
in the configuration file are specified in ticks. Each router
and its components in the network are updated for every tick.
Hence, when decreasing the tick from, say, 0.1ns to 0.01ns the
simulation time also goes up from 1× to 10×.

A. Design

Fig. 1 (a) shows all the modules involved in the design of
ANSim. When compiled, it is an executable of size ∼ 1MB,
which takes in a configuration file of the NoC that needs to be
simulated and a set of override parameters as command-line
arguments.

The configuration file contains the parameters shown in Fig.
1 (c). The parameters are color coded based on the module it
configures in ANSim (Fig. 1 (a)), and are described in detail
in [2]. Gating parameters includes gating-threshold [13] and
break-even time [14]. The configuration specified in the base
file can be over-ridden by supplying additional arguments.
This allows for rapid scripting and parallel sweeping of the
design space under consideration, without having to write a
configuration for each NoC skew.

In Fig. 1 (a), ANSim reads the configuration file, creates the
network topology based on BookSim’s original model while
the router models are created by the Asynchronous Model &
Timing (AMT) module, which initializes the network. Traffic
is either generated synthetically, based on a configuration
file, or provided by traces pointed by the configuration file.
Netrace [3] module is responsible for injecting real-world
workload based packets into the network from the trace at
a rate independent of the router specification. Orion 3 [15]
module reads in the technology file and keeps a watch on

TABLE II
VALIDATION DATA

(a) Flit latency reported by RTL tools and ANSim
Router Tool 1 Hop 2 Hop 3 Hop
Asynchronous
NoC [4]

Questa [19] 1.48ns 2.92ns 4.36ns
ANSim 1.48ns 2.92ns 4.36ns

TNoC [17] VCS [18] 3 cycle 6 cycle 9 cycle
ANSim 3 cycle 6 cycle 9 cycle

(b) Flit latency reported by BookSim, PANE and ANSim
Synchronous Asynchronous

BookSim ANSim PANE ANSim
Avg Flit Latency (ns) 16.56 16.56 17.99 17.68
Speedup of ANSim 1.1 (w.r.t. BookSim) 26 (w.r.t. PANE)

the configuration of the router and the activity in the router
while the simulation is taking place to compute and report
the static and dynamic energy components of the NoC. The
power gating module has visibility into each router and can
set the state of the router to active, idle or gated, depending
on the parameters specified in the configuration file during
runtime. In this paper, static, non-blocking gating [6] policy is
used, where the router is gated if it has been idle for a fixed
duration. The AMT is also in charge of monitoring the arrival
of data at the switch arbiter to model metastability. The details
of implementation are provided in Section II.

In NoCs with asynchronous routers, the crossbar forwards
the input to the output on a first come first serve basis.
The Switch Allocator (SA) allocates the crossbar when two
requests are present. If the two requests arrive simultaneously
at SA, it can lead to metastability, where the process of
deciding which request to service takes arbitrarily long time. If
two flits arrive with δ time difference, then, the time to come
out of metastability is given by the formula, τ×ln(Twδ ), where
τ and Tw are dependent on the circuit implementation [16].

Fig. 1 (b) shows a single asynchronous router within ANSim
and the points of interaction with the rest of the models. The
hollow arrows in Fig 1 (b) represent the data flow of the flit.
In ANSim, each router in the NoC is individually addressable
and can be set to either synchronous or asynchronous operation
modes. The timing and behavior model of each router needs
to be accordingly specified for individual routers.

At the end of the simulation, latency and throughput of
the packet and flits are reported, power and area reports are
generated, and power gating reports, including duration and
times for which each router was gated, considering the break-
even time are generated.

III. VERIFICATION OF ANSIM

ANSim was verified for both synchronous and asynchronous
operations. For the asynchronous case, the end-to-end flit
latency reported by ANSim when modeling a 2x2 NoC made
of the asynchronous router specified in [4] was taken and
was compared against its implementation in UMC 65nm
technology library. For the synchronous case, TNoC [17] with
2 VCs was modeled in ANSim and VCS [18]. The latency
reported by the tools are given in Table II (a). The tick, as
defined in Section II, in ANSim was chosen as 10ps.

To verify the operation at system level, ANSim was com-
pared with BookSim for the synchronous case and PANE



for the asynchronous case with hypothetical NoCs that act
as targeted test vectors for all five stages modeled by the
simulators. For the synchronous router, the cycle time was set
to 0.5ns. For the asynchronous router, the per stage latencies
of Input Queue (IQ), Route Compute (RC), VC, SA, and
Switch Traversal (ST) were 1ns, 0.5ns, 0.5ns, 1ns, and 0.5ns
respectively. The results for uniform traffic are presented in
Table II (b).

Speedup: Run time for the system-level verification exper-
iment was recorded to find the speedup of ANSim (Table II
(b)). PANE requires Inter-Process Communication (IPC) using
multiple sockets for synchronization as it decouples data-path
(based on BookSim) and timing-path (based on Omnet++)
into two programs. This mechanism allows for asynchronicity
in PANE, but IPC sockets require many system calls and
are slow [20]. ANSim does not have this limitation and is
designed as a program with minimal dependencies. This allows
ANSim to be compiled into a monolithic executable of size
∼ 1 MB, which can fit in most last level caches. Further,
the asynchronicity is handled within the monolithic program
using event queues. This allows ANSim to have 25 × speedup
compared to PANE for the verification experiment. For longer
simulation times, speedup increases further because of better
memory management.

IV. ARCHITECTURAL EXPERIMENTAL SETUP

To demonstrate the features and use cases of ANSim in
Section V, we use the following experimental setup.

Routers - For constructing NoCs, a three-stage open-source
router, TNoC [17], with two VCs and its asynchronous
derivative were used. Here, each VC has a flit depth of 8.
The first stage of the TNoC router is tasked with IQ. The
second stage consists of RC, VC allocation, and SA. The
third stage does ST. TNoC was synthesized in the UMC
65nm technology library, and the cycle latency was found
to be 5.26ns. For deriving an asynchronous TNoC router,
click controllers were used. The click controller has a latency
of 0.26ns when synthesized on the same technology node.
Further, the round-robin SA was replaced with a First Come
First Serve asynchronous SA with a latency of 1.71ns. To
find the per stage latencies of the asynchronous TNoC, each
stage was separately synthesized. For this asynchronous TNoC
router, the per stage latencies were 2.58ns, 4.95ns, and 2.38ns
respectively. For flow control, wormhole switching scheme
was used, while the routing policy was XY.

NoC Variants - The following NoC variants with a size of
8x8 were constructed using the two TNoC routers, and are the
baseline NoCs.

SyncMesh and AsyncMesh are NoCs in mesh topology
with synchronous TNoC and asynchronous TNoC routers
respectively. In HetMesh half of the routers are synchronous
TNoC routers, while the rest are asynchronous TNoC routers.
SyncTorus, AsyncTorus, and HetTorus are the variations of
SyncMesh, AsyncMesh, and HetMesh with Torus topology,
respectively. To show the effect of asynchronous arbitration,
we derive ASyncMet20, AsyncMet40, and AsyncMet60 from
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Fig. 2. Time taken and percentage error in reported latency for various
resolution while simulating AsyncMesh with uniform traffic for 10000ns.
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Fig. 4. End-to-end flit latency reported by ANSim for real-world application
programs from the PARSEC benchmark.
AsyncMesh with a synchronizer latency of 20ns, 40ns, and
60ns respectively. The rest of the NoCs are derived from the
three baseline cases, and the changes are mentioned in the
required sections.

Simulation parameters - The time resolution of 0.2ns was
chosen for simulations based on percentage error and time
taken for simulation, as seen in Section V-1. For synthetic
benchmarking, uniform traffic with packets of 1 flit size was
injected at a rate of 0.005 flits/router/ns for 5 × 105ns. To
represent real-world application, Netrace [3] at 3Ghz was used.
One billion cycles from each program were considered for
evaluation.

V. FEATURES AND USE CASES OF ANSIM

1) Identification of simulation resolution: Larger tick gran-
ularity decreases the simulation time at the cost of simulation
precision. The error will not be high for a tick granularity that
completely divides the timing values of the simulated router.
Identifying the sweet spot that gives a lower error and shorter
simulation times is ideal for speeding up the design process.
Fig. 2 shows that at a tick granularity of 0.2 ns, the error is
near zero compared to a resolution of 0.001 ns while having
significantly short simulation time.

2) NoC saturation point identification: After designing a
router, it would be beneficial to know the no-load end-to-
end flit latency and saturation point of NoCs made using
this router. This would inform the designer regarding possible
operating points of these NoCs for various traffic conditions.
For example, in Fig. 3, it can be seen that the AsyncTorus
has lower end-to-end flit latency compared to AsyncMesh
between 0.0025 flits/router/ns and 0.02 flits/router/ns injection
rates. The designer can conclude the following from this.
1) If the application’s expected injection rate is higher than
the saturation point of the NoC, then the NoC has to be



replaced - either with faster routers or a different topology.
2) If the expected injection rate is between 0.02 flits/router/ns
and saturation point, it is better to use AsyncMesh. 3) If the
traffic on the NoC is sparse and below 0.02 flits/router/ns
injection rate, then it is better to use AsyncTorus among the
three baseline NoCs. Further, it allows the designer to choose
between two or more routers when implementing an NoC with
the same topology. We believe that the ability to report system
level, end-to-end flit latencies of a large variety of NoCs under
various traffic patterns is the real strength of ANSim.

3) Real-world application benchmark: Even though syn-
thetic benchmarks can roughly identify the operating region of
an NoC, real-world traffic behaves very differently from the
synthetic benchmarks [21]. Hence, it is necessary to narrow
down the expected end-to-end flit latency for the desired ap-
plication of the NoC. Fig. 4 shows that PARSEC applications
prefer asynchronous NoCs over synchronous NoCs.

4) Modeling asynchronous arbitration: Fig. 5 and Fig. 6
reveal that the metastability of arbiters can cause a significant
increase in flit latency at high injection rate, but with realistic
applications like PARSEC [22] the effect of metastability
is negligible for these NoCs. It might be possible that for
a particular combination of asynchronous or heterogeneous
NoCs, and desired NoC application, the effect of arbiter
metastability is significant on the flit latency, and therefore
needs to be found.

5) Modeling power and power gating: Modeling power
is crucial to avoid over-provisioning of resources to improve
timing performance. Fig. 7 shows the breakup of power used
by the components in the NoC. From Fig. 7, it is observed that
for Asynchronous TNoC, while running PARSEC programs,
more than 90% of power is static power. This skew in power
is due to the large buffer size, small frequency along with very
sparse traffic. This presents the possibility of applying power-
saving techniques like power gating. When employing an
asynchronous variation of non-blocking power gating policy
[6] on AsyncMesh with PARSEC traffic, the static power was
reduced by 60% on average (Min 20%, Max 90%).

VI. CONCLUSION

In this paper, we have presented ANSim, an asynchronous
NoC simulator, which can be used to model and analyze
synchronous, asynchronous, and heterogeneous NoCs. ANSim
has a large variety of NoC architectural configurations readily
available for simulation. ANSim is significantly faster (∼ 25×)
than existing asynchronous NoC simulators. We demonstrate
various ways in which the tool can help us characterize the
workloads when run on an Asynchronous NoC, and how this
can be used to improve energy efficiency using power gating.
We show that for real benchmarks, where network traffic
happens to be sparse, overall system performance does not
degrade due to metastability, by modeling it in ANSim. The
simulator is available at github.com/TomGlint/ANSim
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