
Exploring Non-Volatile Main Memory Architectures
for Handheld Devices

Sneha Ved Manu Awasthi
Indian Institute of Technology Gandhinagar

{sneha.ved,manua}@iitgn.ac.in

Abstract—As additional functionality is being added to con-
temporary handheld devices, the SoCs inside these devices
are becoming increasingly complex. Similarly, the applications
executing on these handhelds are beginning to exhibit an ever
increasing memory footprint. To support these trends, main
memory capacity of these SoCs has been increasing over time.
Due to these developments, memory system’s contribution to the
overall system power has increased dramatically.

Non-volatile memories have been used in server architectures
to increase capacity as well as keep memory system’s power
consumption in check. However, in the handheld domain, where
user experience and battery life are of paramount importance, the
applicability of such technologies has not been widely studied. In
this paper, we propose and evaluate a number of hybrid memory
architectures using mobile DRAM and PCM. We show that in-
telligent memory architectures, cognizant of workload’s memory
access patterns can provide significant energy savings without
compromising on user experience. Using proposed approach, we
can devise architectures that exhibit significant energy savings
with only a 2.8% performance loss.

I. INTRODUCTION

The smartphone and the handheld device market has seen
tremendous improvements in the last decade. Since these
devices are mostly used for information consumption [1],
entertainment and communication, with an emphasis on mo-
bility, the primary design metrics still revolve around response
time and battery life [2]. In a sense, both these metrics
are contradictory to each other - high performance usually
comes at the cost of higher power dissipation (reduced battery
life). For mobile devices, longer battery life has often taken
precedence over performance. As a result, LPDDR variants are
the popular choice for memory technology in mobile SoCs
despite having performance capacity disadvantages over the
more common DDRx variants [3]. However, LPDDR variants
provide a bigger energy advantage, especially in standby
power consumption [4].

As mobile applications become more complex, the memory
capacity per SoC had to increase to keep up with their
demands. High end smartphones are moving to 6-8 GB
main memory capacity [5], and the number is projected to
increase over time [6]. Furthermore, in addition to capacity,
some applications, like games, have much higher bandwidth
requirements, leading to SoCs incorporating two or more
memory channels [7]. Clearly, the memory requirements of
mobile SoCs have reached the inflection point where there is
an immediate need to start looking at memory architectures
that lead to increased memory capacity, reduction in overall
power consumption, without compromising on performance.

Non volatile memories (NVMs) have been used in the
server domain for the aforementioned goals [8]. NVM has the

This work was supported in part by SERB grant ECR/2017/000887

advantage of 2x-4x increased storage density and lower energy
consumption than most DDR/LPDDR variants. However, it
does suffer from increased access latencies, variable write
times and limited write cycles. These properties, coupled with
the fact that SoC design constraints, operating systems and
workload characteristics for servers are vastly different as
compared to handheld devices, hybrid memory architectures
for servers cannot be ported over blindly for the handheld
domain.

In this paper, we make a number of significant contributions.
First, we carry out a thorough, memory-centric characteriza-
tion of the Moby [9] benchmark suite to analyze the memory
access patterns of mobile benchmarks. We identify the address
regions of high and low memory activities and propose novel
architectures that intelligently utilize this information to create
hybrid memory architectures. Finally, we propose and evaluate
new DRAM address mapping policies that further limit the
performance degradation caused by the hybrid memory archi-
tectures created in the previous step. The combination of these
three techniques results in memory architectures with lower
energy consumption compared to baseline, LPDDRx variants
and negligible effect on user experience.

II. BACKGROUND AND MOTIVATION

A large number of specialized units including GPUs,
modems and DRAM have been integrated to multiple CPU
cores to form a SoC [10]. In order to keep power con-
sumption in check, mobile SoCs are typically provisioned
with low-power double data rate (LPDDR) DRAM. LPDDR
eliminates energy inefficient circuits from commodity DDRx
DRAM [11], making it an ideal fit for handheld devices.

The amount of DRAM capacity in mobile SoCs has been
consistently increasing over time. The earliest versions of
smartphones (circa 2007) were provisioned with 256 MB of
main memory [12]. Over the past decade, the capacity has
consistently been increasing. Contemporary, high-end smart-
phones are provisioned with 1 GB to 4 GB, and 8 GB capacity
is projected to be the new norm in 2017 [6]. As a testament
to increasing working set sizes for smartphone applications,
[13] reported that almost 15% of the applications running
on smartphones has to be relaunched because of a lack of
available DRAM capacity. Increased capacity has also led to
increase in the power consumption of the DRAM subsystem.
In order to verify these claims, we analyzed the effects of
increasing DRAM part capacity on the power consumption of
the part. Micron’s power calculator for LPDDR2 devices [14]
was used for this analysis. Doubling DRAM capacity from
1 Gb to 2 Gb under same usage conditions leads to a power
consumption increase of 12.9% for highest row-buffer hit

rate (85%). The increase is higher in cases of low locality
– for 15% hit rates, the corresponding increase in power is
26.7%. This increase in the power consumption of the DRAM
component also leads to a substantial increase in the memory
subsystem’s contribution to the overall energy consumption.
[15] projects that with increasing capacity, DRAM could
constitute upto 20% of the overall system power consumption.
This suggests that in the near future, blindly adding more
capacity using higher capacity parts will become infeasible
from an energy perspective.

III. RELATED WORK

A number of techniques have been proposed to use NVMs
in the context of handheld devices. The use of NVM has
broadly been classified into three major classes :

a) NVM + DRAM - As Hybrid memory: Zhao et al. [16]
propose a DRAM-PCM hybrid memory hierarchy for hand-
held devices. They make the observation that system software
techniques are required to partition the data effectively be-
tween DRAM and NVM. They propose an energy cost model
for each data for handling data placement.

b) NVM + DRAM - As swap space: A number of recent
research has proposed the use of NVMs as swap spaces.
Kim et al. [17] present CAUSE, a paging mechanism that
manages data between DRAM and NVM swap at an OS page
granularity. Kawata et al. [18] turn the tables around on most
proposals and advocate using NVM as the main memory, and
DRAM as the “swap” space.

Zhong et al. [19] propose DR-Swap, an in-memory paging
design to reduce main memory energy consumption in smart-
phones. They first propose IMP (in-memory paging) which
treats NVM as a swap space, which lets the kernel swap pages
between the DRAM and NVM regions without having to go
through the storage stack. The Direct Read (DR) optimization
to IMP lets the applications read data directly from the NVM
swap area, without having to bring the pages into DRAM. In
a similar approach, Zhong et al. [20] propose NVM-Swap, a
swap mechanism that implements 1) copy-on-write to reduce
the movement of data between the two memory portions, and
2)Heap-Wear which addresses the wear leveling issues of
NVM, while being cognizant of the space requirements.

c) NVM + FLASH - As low latency Flash: [21] proposes
vFlash, a cross-layer scheme to manage hybrid storage archi-
tecture comprising of NVM and Flash by adding virtualized
Flash (vFlash) software layer to the Linux kernel.

To the best of our knowledge, the work done Duan el al. [22]
to carry out coarse grained analysis of a number of popular
mobile apps to characterize the available performance wiggle
room to estimate the maximum performance overhead that can
be tolerated without effecting user experience, comes closest to
the work done in this paper. This paper differs from prior work
in several ways. First, we carry out a detailed memory activity
characterization of various smartphone applications to gauge
memory regions with little or no activity, that can be retrofitted
with low performance, low energy memory technologies like
PCM. This is explained in greater detail in the next section.

IV. WORKLOAD ANALYSIS

To assess suitability of heterogeneous memory architectures
for handheld devices, we analyzed memory addresses and
regions accessed by various workloads in the Moby suite [9].

First, to quantify the effects of memory hierarchy on the user
experience, we ran experiments where the memory configura-
tion was changed from LPDDR3 to PCM.We observe that in
many cases, while the user experience is adversely effected,
there were significant savings in memory energy consumption.

Substituting LPDDR3 hierarchy with a PCM one has a
drastic impact on both performance and energy consumption.
The move results in a maximum performance degradation
of 50% (Kingsoftoffice), and an average slowdown of 19%.
Although memory energy consumption is reduced by 75%
across the suite, the tradeoff however, is unacceptable. In order
to reduce the decrease in performance, we wanted to identify
the regions of memory that aren’t as frequently accessed and
could better tolerate the increased memory access latencies
incurred due to inclusion of an NVM in the hierarchy. We
found that memory accesses, for almost all programs in the
Moby suite, are clustered around a few, select address ranges
as shown in Figure 1. The Y-axis represents the physical
addresses, while the X-axis depicts the time during program
execution a particular address was accessed. The more an
address is accessed, the darker it appears on the map. We
observe that over 75% of all distinct addresses accessed were
concentrated within 25% of the total address space. These
experiments were done with an LPDDR3 memory system with
two channels and default DRAM address mapping scheme.
These observations are in line with how Android allocates
memory [23]. The observations from these experiments form
the basis of the hybrid memory architecture devised in this
paper : if frequently accessed data can be concentrated to
the fastest regions of a hybrid memory architecture, memory
system’s energy consumption can be reduced significantly,
without any loss in performance.

V. PROPOSAL

Based on the observations in Section IV, we devise hybrid
memory architectures using PCM and LPDDR3. LPDDR3 is
an obvious choice for mobile DRAM. We start with a baseline,
homogeneous memory architecture where the entire physical
address space comprises of either LPDDR3 or PCM connected
via a memory controller and two channels.

To devise heterogeneous architectures from this baseline,
we assume that the entire memory address space can be
divided into equal sized sub-address spaces (SAS). Each SAS
can be mapped to a particular memory technology, without
making any changes to the underlying system software. We
also assume that each SAS can be controlled via a combi-
nation of independent 1) memory controller and, 2) memory
channel(s). Most of these assumptions have been shown to be
implementable in prior, independent studies [24]. As a result,
a memory address space can potentially be divided into N
SAS, with N memory controllers and N channels.

In order to keep the complexity of the SoC in check,
contiguous regions of the SAS that map to the same memory
technology to fuse their controllers and share their memory
channels. This optimization can potentially reduce the amount
of available parallelism and hence increase the queuing times
at the controller.

Figure 2b presents a case where a quarter of the total address
space (SAS 1) is mapped to LPDDR3, and the rest is mapped
to PCM (SAS 0). This design only calls for two controllers,

(a) FrozenBubble (b) SinaWeibo (c) Netease (d) Baidu

Fig. 1: Memory address access scatter plots. Y axis is memory addresses, X axis, time. Dots mark the time when an address was accessed.

(a) Baseline Memory Archi-
tecture (LL/PP)

(b) Two controllers with
Quarter PCM and fused
controllers for LPDDR

(c) Two controllers with Half
PCM (LP)

(d) Four controllers with
Quarter PCM (PLLL)

Fig. 2: Hybrid Memory Architectures for Multiple Controllers

and two channels. The variant presented in Figure 2d is a
memory architecture where the top quarter SAS is PCM, while
the bottom three-fourths is equally divided into quarter chunks,
with each chunk connected using its own controller and an
independent channel. To simplify heterogeneous designs, we
disallow interleaving of memory requests across channels,
even in the baseline. This has additional benefits in real life
implementations as reads and writes for a particular cacheline
are not split across multiple memory technologies, which
might result in access times being dominated by the access
times of the slowest memory technology in play. Due to
limitations of Gem5 with the ARM ISA, we experimented with
2 GB of available memory capacity. In the rest of the paper,
a two controller homogeneous system with only LPDDR3
memory will be referred to as LL, and a heterogeneous
system, with LPDDR3 in the top half and PCM in the second
half will be referred to as LP. Similarly, for the case with
four controllers, in an hybrid architecture with LPDDR3 and
PCM, with the third quarter assigned to PCM and the rest to
LPDDR3, will be referred to as LLPL.

VI. METHODOLOGY AND RESULTS

We evaluated the proposed techniques using MofySim [25].
Table I lists the simulation parameters used in this study. The
timing parameters for PCM were derived from [26], while
the energy calculations were based on NVMain [27]. All the
proposals were evaluated using Moby [9] benchmark suite.

For the case with two controllers, we evaluate all possible
combinations possible with LPDDR3 and PCM. Figure 3a
presents the execution time and energy consumed (normalized
to LL, lower is better for both) for each benchmark. We
observe that a naive shift from LL to PP results in unacceptable
performance losses - 20% on average across the entire suite
at a significant energy savings of 49%. Intelligent choice of
SAS for LPDDR and PCM technologies is able to contain the
performance loss for many benchmarks while still resulting
in significant energy savings. For example, Sinaweibo and
Netease have significant number of memory accesses in the

middle chunk of two heavily accessed SAS. The LP config-
uration for these workloads results in mapping almost all of
these to the slower, PCM technology. As a result, for these
configurations, the PL variants perform better than LP ones.

Furthermore, some of the slowdown exhibited in moving
from an LP to PL variants could be due to the use of
the (default) DRAM address mapping scheme that distributes
consecutive addresses across multiple SAS. Figure 3b presents
the results of 2 controller configurations with ChRoRaBaCo1

mapping scheme, which tries to restrict the accesses to con-
secutive addresses within a SAS. This helps us further reduce
the performance gap between LL and PL variants to only 1%.
The energy savings for the PL variant with the new address
mapping scheme are still very significant at 23%.

Figure 4 presents the results of another set of experiments
where the address space consists of 4 SAS (LLLL, LLLP,
LLPL, LPLL, PLLL and PPPP). The trends in this case remain
similar. Ability to create smaller SAS results in multiple ben-
efits. First, if chosen carefully, the area of memory with little
or no memory activity when replaced with PCM, results in
almost negligible performance loss and some energy benefits.
As a testament to this, the best performing architectures across
the entire benchmark suite (with the default address mapping
scheme, Figure 3a) are LLPL and LPLL. The former exhibits
an average slowdown of 7.3% over LLLL configuration, while
the latter bridges the gap exhibiting an average slowdown of
0.9%. However, without address mapping optimizations, the
energy savings are small as well - 2% for LPLL.

As shown in Figure 4b, the use of new DRAM address
mapping mechanism bridges this gap. The LLLP configuration
results in a 72% energy savings with only a 3% performance
penalty. Similarly, other configurations provide a multitude of
design choices to architects for various energy - performance
tradeoff points. For example, the PPPP configuration will
result in 95% energy savings with 13% performance loss,

1Channel:Row:Rank:Bank:Column. We are not able to present the results
of other mapping schemes due to space restrictions.

(a) Default Address Mapping

(b) New/Proposed address mapping (ChRoRaBaCo)

Fig. 3: Results for 2 controller experiments. Primary Y axis - runtime
relative to LL, secondary Y axis - relative energy consumption.

while the LLPL configuration helps provide 10% energy
savings at 0.5% performance loss.

ISA,CMP size,Core Freq. ARM, 4-core, 1 GHz
L1 cache 16KB/4-way, private, 6-cycle
L2 cache 2MB/8-way, private, 44-cycle
Baseline 2x 32-bit Channels, 1/Memory Controller
DRAM 1 DIMM/Channel

Configuration 1 Ranks/DIMM,1 device/Rank,
8 Banks/Rank

DRAM Frequency/Addr Map 800MHz /RoCoRaBaCh
PCM Timings tRCD:44ns,tCL:7.5ns,tRAS:25.5ns,tWR:300ns

LPDDR3 Timings tRCD:18ns,tCL:15ns,tRAS:42ns,tWR:15ns
PCM Energy (per word) Read:0.08nJ, Write:1.68nJ

LPDDR3 Energy (per word) Read:3.40nJ,
Write:1.02nJ, Refresh:38.55nJ

OS Android 4.2.2

TABLE I: Simulator parameters, energy [27] and latency [26] values

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a first of it’s kind study in the
handheld domain to devise memory architectures with non
volatile memories like PCM. These hybrid architectures con-
tain performance losses while maximizing the energy gains.
Unlike previous studies, which incorporate NVMs in the hier-
archy as a swap devices, we propose architectures and DRAM
address mapping mechanisms to make PCM a first class
component of the memory hierarchy. Our approach provides
the SoC architects a wide variety of options to choose from the
performance vs. energy savings curve. Using a complete set
of mobile benchmarks, we show that architectures that exhibit
up to 61% energy savings in the memory subsystem with only
a 2.8% performance loss can be devised.

REFERENCES

[1] Q. Xu et al., “Identifying diverse usage behaviors of smartphone apps,”
in ACM SIGCOMM IMC, 2011.

[2] S. Hosio et al., “Monetary assessment of battery life on smartphones,”
in CHI, 2016.

[3] K. K. Yee, “Transitions: A Roadmap to Low-Power Memory,” 2014.

(a) Default Address Mapping, 4 Ctrl

(b) New/Proposed address mapping (ChRoRaBaCo), 4 Ctrl

Fig. 4: 4 controller experiments. Primary Y axis - runtime relative to
LLLL, secondary Y axis relative energy consumption.

[4] “Mobile Low-Power DDR SDRAM,” 2011.
[5] “One Plus 5.” [Online]. Available: https://oneplusstore.in/5
[6] N. Shah, “Smartphone Trends: More Memory, More Market Share,”

2017.
[7] A. Frumusanu, “Early Exynos 8890 Impressions And Full Specifica-

tions,” 2016.
[8] M. K. Qureshi et al., “Scalable High Performance Main Memory System

Using Phase-change Memory Technology,” in ISCA, 2009.
[9] Y. Huang et al., “Moby: A Mobile Benchmark Suite for Architectural

Simulators,” in ISPASS, 2014.
[10] L. Torres et al., An Introduction to Multi-Core System on Chip – Trends

and Challenges, 2011.
[11] K. T. Malladi et al., “Towards Energy-proportional Datacenter Memory

with Mobile DRAM,” in ISCA, 2012.
[12] N. Patel, “iPhone 3G S processor specs: 600MHz CPU, 256MB of

RAM,” 2009.
[13] W. Song et al., “Personalized Optimization for Android Smartphones,”

ACM TECS, vol. 13, no. 2s, pp. 60:1–60:25, Jan. 2014.
[14] Micron, “LPDDR2 System Power Calculator,” 2016.
[15] A. Carroll et al., “The Systems Hacker’s Guide to the Galaxy Energy

Usage in a Modern Smartphone,” in APSYS, 2013.
[16] Z. Shao et al., “Utilizing PCM for Energy Optimization in Embedded

Systems,” in ISVLSI, 2012.
[17] Y. Kim et al., “CAUSE: Critical Application Usage-Aware Memory

System Using Non-volatile Memory for Mobile Devices,” in ICCAD,
2015.

[18] H. Kawata et al., “Experimental design of high performance non volatile
main memory swapping using DRAM,” in SNPD, 2015.

[19] K. Zhong et al., “Energy-Efficient In-Memory Paging for Smartphones,”
IEEE TCAD, vol. 35, no. 10, 2016.

[20] ——, “Building High-performance Smartphones via Non-volatile Mem-
ory: The Swap Approach,” in EMSOFT, 2014.

[21] R. Chen et al., “Unified non-volatile memory and nand flash memory
architecture in smartphones,” in ASP-DAC, 2015.

[22] R. Duan et al., “Exploring memory energy optimizations in smart-
phones,” in IGCC, 2011.

[23] C. Rinaldi, “Android vs IOS - How different is their RAM Management,”
2017.

[24] G. Dhiman et al., “PDRAM: A hybrid PRAM and DRAM main memory
system,” in DAC, 2009.

[25] M. Ju et al., “MofySim: A mobile full-system simulation framework for
energy consumption and performance analysis,” in ISPASS, 2016.

[26] C. Xu et al., “Overcoming the challenges of crossbar resistive memory
architectures,” in HPCA, 2015.

[27] M. Poremba et al., “Nvmain 2.0: A user-friendly memory simulator to
model (non-)volatile memory systems,” IEEE CAL, vol. 14, no. 2, pp.
140–143, July 2015.

