
Hardware-Software Co-Design of a Collaborative DNN Accelerator for

3D Stacked Memories with Multi-Channel Data
Tom Glint

IIT Gandhinagar, India

tom.issac@iitgn.ac.in

Manu Awasthi

Ashoka University, India

manu.awasthi@ashoka.edu.in

Joycee Mekie

IIT Gandhinagar, India

joycee@iitgn.ac.in

Abstract—Hardware accelerators are preferred over general-
purpose processors for processing Deep Neural Networks (DNN)
as the later suffer from power and memory walls. However,
hardware accelerators designed as a separate logic chip from
the memory still suffer from memory wall. Processing-in-memory
accelerators, which try to overcome this memory wall by develop-
ing the compute elements as part of the memory structures, are
highly constrained due to the memory manufacturing process.
Near-data-processing (NDP) based hardware accelerator design
is an alternative paradigm that could combine the benefit of
high bandwidth, low access energy of processing-in-memory, and
design flexibility of separate logic chip. However, NDP has area,
data flow and thermal constraints, hindering high throughput
designs. In this work, we propose an HBM3-based NDP accel-
erator that tackles the constraints of NDP with a hardware-
software co-design approach. The proposed design takes only
50% area, delivers a speed-up of 3×, and is about 6× more
energy efficient than state-of-the-art NDP hardware accelerator
for inferencing workloads such as AlexNet, MobileNet, ResNet,
and VGG without loss of accuracy.

Index Terms—Hardware-software co-design. Deep Neural Net-
work Accelerator, HBM3.

I. INTRODUCTION

Modern Deep Neural Networks (DNN) are capable of

image classification, object detection, and segmentation with

higher accuracy than humans [1]. However, to achieve such

high accuracy, the DNNs have to perform hundreds of mil-

lions of Multiply Accumulate (MAC) operations [2]. Several

times, these DNNs are deployed in embedded and real-time

applications with strict latency and energy constraints [1],

[3]. Unfortunately, general-purpose computers can not meet

these constraints due to power [4] and memory walls [5].

Conventional hardware accelerators such as Eyeriss [6] and

Simba [7] and Processing-in-Memory based accelerators such

as UpMem [8], Newton AiM [9] and GDDR6-AiM [10] have

been proposed to meet these constraints. Conventional hard-

ware accelerators have efficient compute logic which reduces

compute power, but they suffer from memory wall owing

to large accesses to external main memory, which leads to

high inference energy costs. On the other hand, processing-in-

memory accelerators that fabricate compute logic on the same

die as memory using the DRAM process have energy efficient

memory accesses, but low compute throughput, which, in turn,

affects DNN inference time [10].

Near Data Processing (NDP) has the potential to combine

the best of conventional and processing-in-memory hardware

accelerators, as the logic die and memory are 3D stacked.

Several DNN accelerators based on Near Data Processing

paradigm have been proposed, such as Tetris [11], Neu-

rostream [12], CLU [13], Hydra [14], Nzespa [15] and [16].

These designs implement the DNN accelerator IPs in the

This work is supported through grants received from Science and Engineer-
ing Research Board (SERB), Government of India, under SERB-SUPRA grant
SPR/2020/000450, and Semiconductor Research Corporation (SRC) through
contracts 2020-IR-3005 and 2020-IR-2980

logic layer of 3D stacked memories. The earlier proposals use

Hybrid Memory Cube (HMC) [17] and/or High Bandwidth

Memory (HBM) [18], [19]) which follows the traditional

manufacturing processes, but allows for complex and fast

designs. The CMOS logic is connected with the 3D stacked

DRAM memories using Through-Silicon-Vias (TSVs), which

in turn provide high bandwidth, low energy memory access to

the logic layer. Among the existing NDP accelerator designs,

Tetris has the highest peak throughput of 3.14 TOPS, while

consuming only ∼ 4 pJ/MAC operation [11]–[15]. However,

these accelerator designs are neither maximized to the con-

straints of 3D stacked memories nor designed from the ground

up for the spatial structure of these 3D stacked memories, and

rather are extensions of conventional hardware accelerators

such as Eyeriss [6], [11], [16]. This leads to poor resource

allocation and decreased throughput. Due to the 3D structure

of HMC and HBM, accelerator designs in the logic layer are

limited to 15 W Thermal Design Power (TDP) [20], 256 GB/s

memory bandwidth [17], [18] and up to 50 mm2 area [11],

[18] constraints.

To the best of our knowledge, this is the first work on

NDP which co-optimizes the 3D NDP design and the neural

networks structure to best utilize available silicon budget at the

logic layer and give the best possible throughput and energy

efficiency while not violating the constraints of 3D memory.

The main contributions are: (i) We identify that

power/thermal constraint primarily limits the design of NDP

accelerators over area and bandwidth. (ii) We perform 3D

memory constraint-aware architectural exploration to identify

architectural design decisions for high throughput, low energy

design without loss of accuracy during inference. (iii) We

perform detailed modeling of the proposed architecture by

implementing it in the logic layer of HBM3. (iv) We show

that the proposed Hardware Accelerator (HA) architecture,

named EnX3D, achieves 3× speedup and is 6× more energy

efficient than SOTA NDP-based accelerator when inferencing

workloads such as AlexNet [21], MobileNet [1], ResNet

[2] and VGG [22]. (iv) A detailed architectural analysis is

performed to identify and verify that resources are not over-

provisioned. Along with a sensitivity analysis to show the

merit of the design on HMC.

II. BACKGROUND: 3D MEMORY

The requirement of high bandwidth, low latency memory

has led to the development of 3D memory, where DRAM

dies are stacked on top of a logic die. Fig. 1a shows Hybrid

Memory Cube (HMC) [17] and Fig. 1b shows High Bandwidth

Memory (HBM3) [18], which are two popular instances of

3D memory. In both these instances, the banks of memory in

the DRAM dies are connected to the logic die with Through

Silicon Vias (TSV). However, the spatial distribution of these

TSVs is different in both designs. In HMC, the entire 3D stack



is split into 16 vaults, each having a separate DRAM controller

at the logic layer that is connected to the banks directly above

using TSVs. TSVs in HBM3 are grouped at the center but

provide independent connectivity to sixteen memory channels.

The stacked DRAM dies provide multiple gigabytes of

storage capacity. It, therefore, has a large area footprint

(>100mm
2), and therefore the logic die placed under the

DRAM dies share a similar footprint. However, the area

inside the logic die is mostly unutilized as the logic die

only implements controllers and channels for communication

outside the memory package. This unutilized area could be

used for implementing a DNN accelerator. Further, HBM has

gained a wider adoption than HMC and therefore, this work

will also focus on HBM.

Bank

TSVs

DRAM Die

Logic Die

Vault

Bank

IO

TSVs

Channel

DRAM Die

Logic Die

(a) HMC (b) HBM3

Fig. 1. Structure of (a) HMC and (b) HBM3 showing the placement of TSVs
and Channels/Vaults

A. 3D Memory: Opportunities and Challenges

Capacity: Stacking memory dies as layers provide high

density storage solutions with total capacity depending on the

total number of layers and manufacturing process. HBM3 im-

plementations upto 24 GB capacities have been demonstrated.

This is particularly useful in the case of DNN models, where

the size of models can reach several gigabytes.

Bandwidth: For fast processing of DNNs, the Multiply-

and-Accumulate (MAC) operations have to be performed in

parallel. To perform these parallel operations, the processing

elements have to be continuously fed with input and filter

data while outputs are stored back from the processing ele-

ments. While traditional DIMM-based DDR4 DRAM provides

25 GB/s of bandwidth, HBM3 provides up to 820 GB/s [18],

[19]. This allows for more instances of processing elements

in the accelerator to be fed with data.

Access Energy: DDR4 interface costs 46 pJ/bit for data

transfer while data transfer from the DRAM die to the logic

die costs 3.9pJ/bit for HBM3 [19], [23]. However, data transfer

to the outside the HBM package requires more than 15pJ/bit.

Flexibility: While the traditional ASIC design flow of DNN

accelerators allows for designs with arbitrary dimensions and

multiple interfaces, DNN accelerator designs for 3D memory

are limited to structural constraints. In the case of HMC,

each vault operates under a different clock domain; therefore,

designs implemented at each vault must adhere to it. Similarly,

HBM3 has 16 banks that provide massive bandwidth, but DNN

data has to be partitioned across these banks efficiently so that

access can be parallelized.

Thermal Design Point (TDP): The 3D designs are limited

to 15 W TDP with low-end active cooling, while with passive

cooling, it is further limited to 8.5 W [20].

Area: Due to the organization of the communication chan-

nel and other controllers, HMC has a per vault area budget of

3.5 mm
2 while HBM3 is limited ∼ 36 mm

2 [16], [18]

III. EXPERIMENTAL SETUP

The experimental setup used for a fair and detailed compar-

ison has three significant aspects: (i) The hardware is modeled,

and its hardware-bound aspects are captured using a frame-

work made of Timeloop [23], Accelergy [24], Cacti [25], and

Aladin [26]. (ii) Both older NNs, like AlexNet [21] and VGG

[22], and newer deep NNs, like ResNet [2] and MobileNet

[1], are considered as workloads for analysis. (iii) The optimal

workload mapping is found for each hardware, rather than a

static mapping policy, for a fair comparison of accelerators.

A. Model framework and optimal mapping

Timeloop is used for modeling the DNN accelerator. It cap-

tures the spatial organization of a DNN accelerator, including

the memory hierarchy (DRAM, SRAM buffers, registers) and

the placement of Multiply-Accumulate (MAC) units in relation

to the memory hierarchy [23]. It also captures the bandwidth

available for communication between each hardware unit.

Accelergy computes the area and energy associated with sub-

components of the DNN accelerator. The energy is calculated

on a per-action basis [24]. Cacti and Aladin are used for find-

ing the area and energy of SRAMs and MAC units. This work

uses the 45 nm node for evaluation. Further, the area, latency

and energies of compute circuits are obtained from Cadence

Genus. Timeloop Mapper identifies all possible permutations

of mapping a workload to the architecture and calculates the

latency and energy associated with each mapping based on

the Timeloop and Accelergy models. Further, it optimizes for

a specified parameter (least delay followed by least latency)

and outputs the optimal mapping based on the optimization

criteria. We compare the designs in this work for the optimal

mapping case.

B. Workloads

This work primarily focuses on inference workloads based

on CNNs. We use AlexNet and VGG to establish a baseline,

as prior works were optimized for them. AlexNet is a DNN

with five convolutional layers and has filters with dimensions

as large as 11×11. VGG16 is a DNN with substantially more

layers and has 13 convolutional layers, and the largest and

most common filter size is 3×3. However, we use a more

modern and deeper workloads, ResNet and MobileNet from

MLPerf inference benchmark suite [1]. In ResNet, we consider

only the unique layers, and results from these individual layers

can be extrapolated to any ResNet variant.

IV. DESIGN SPACE EXPLORATION

A. Constraints on the Hardware Accelerator (HA)

Prediction Accuracy: Typically, DNN models are trained

with 32-bit IEEE 754 float number system-based computa-

tions, which results in very high accuracy [3]. However, the

hardware implementation of MAC units that perform 32-bit

float point numbers is expensive in terms of latency, energy

and area, as seen in Table I. Therefore, modern accelerators

quantize the model to fewer bits or to a different number

system, such as an integer number system. Furthermore, this

quantization usually results in inference accuracy drop. Hence,

the data representation choice should have similar accuracy as

the base model trained with a float number system.

Latency: DNN applications are typically deployed in sce-

narios where the input is sourced from a sensor of a sys-



TABLE I
COMPARISON OF CANDIDATE MULTIPLIERS THAT CAN BE IMPLEMENTED AT THE MAC UNIT OF DNN ACCELERATORS, TAKEN FROM [27]

Multiplier Abbrv. Type Bit Width Bit Arrangment Latency (ps) Energy (pJ) Area (um2) LeNet Acc. ResNet Acc.

IEEE 754 Multiplier(32,8) FP32 Floating Point 32 (N,es) 1299 22.5 13830.84 98.49% 82.21%

IEEE 754 Multiplier(16,5) FP16 Floating Point 16 (N,es) 979 4.55 3095.28 98.49% 82.02%

IEEE 754 Multiplier(10,5) FP10 Floating Point 10 (N,es) 579 1.17 964.08 98.43% 63.81%

Bfloat16 Multiplier(16,8) BF16 Floating Point 16 (N,es) 832 2.75 2148.12 98.52% 79.19%

Array Multiplier AM16 Integer 16 - 1780 8.81 6015.24 98.55% 53.18%

Approximate Fixed Posit Multiplier(10,4) AFPX10 Approximate 8 (N,es) 602 0.607 959.04 98.62% 80.73%

tem, and the system makes decisions based on the result of

inference. This is commonly referred to as Single Stream

scenario [1] and should have low inference latency. MAC

operations must be performed with as much parallelism as

possible without breaking other constraints to achieve this.

Power: The TDP of 3D memory is limited to 8.5 W with

passive cooling and 15 W with low-end active cooling. Hence,

the system’s overall power should be lower than these limits

based on the deployment.

Area and organization: Channels in HBM3 operate inde-

pendently and fragment the available capacity and bandwidth,

making inter-channel communication difficult. Hence a large

monolithic accelerator is not viable, and an independently

operating distributed system of smaller accelerator instances

attached to each channel with very little communication with

each other is necessary. Further, due to the overall form factor,

the area budget for each instance of the HA attached to a

channel can only be less than 2.5 mm
2 for HBM3.

B. Hardware Software Co-Design - Data format of DNN

Table I shows latency, energy, area and accuracy of various

multipliers that can be used for inference without retraining

the trained model. Traditionally, models are quantized to 8-bit

integers or 16-bit integers for low latency and energy, which

leads to a significant loss of accuracy for deeper DNNs such

as ResNet. 16-bit quantized versions of IEEE float and Brain

Float (BFloat) provide one order of magnitude lesser area

and energy, but further quantization results in lower inference

accuracy, as shown in Table I. [27]–[29] have shown that

variants of the posit number system [30], [31] can be used

for inference with higher quantization and negligible loss of

accuracy compared to 32-bit float. This is possible as this

number system encodes data such that numbers near zero

value have higher precision, unlike the uniform distribution

of precision of IEEE float format, which allows for higher

quantization as most of the DNN model data value lies

between zero and one [28]. In this work, we choose AFPX10

shown in Table I from [27] due to its low latency, energy,

and area while conceding minimal accuracy loss compared to

IEEE float format.

C. Collaborative design of HA instance per channel
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Fig. 2. Abstract Architecture and data flow of (left) Conventional Hardware
Accelerator and (right) Hardware Accelerator system for 3D memory based
on Near Data Processing Paradigm

The overall data flow in a conventional HA is shown in

Fig. 2a where the data flows from a single source. However, in

HBM3, the data flows from 16 independent memory channels

and to efficiently utilize the available bandwidth and capacity

of all the channels, the workload has to split across all

channels. We propose using symmetric HA instances that have

be designed collaboratively across the channels to efficiently

process the split workload. Fig. 2b shows the level 0 data flow

diagram of the proposed HA system.
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architecture shown in Fig. 2b with distributed buffers when inferencing the
unique layers of ResNet

Buffers are typically used in HA to cache data to exploit

data reuse during processing and reduce the costly accesses

to DRAM. To find the smallest buffer capacity required for

minimal data access, the abstract architectures specified in

Fig. 2 is modeled to find the count of DRAM accesses

when processing ResNet. ResNets have layers with inputs

with width and height ranging from 224×224 to 7×7 with

a variety of channel counts and filter shapes, thus providing

a representative workload for identifying organizational re-

quirements of the HA. The resultant access count to DRAM is

shown in Fig. 3. Conventional HA requires 256KB of buffer to

minimize DRAM access. However, for the proposed design,

it is observed that the access count becomes minimal at 64

KB buffer at each channel instance while 16 KB and 32

KB have 3% and 9% more memory accesses due to data

duplication. However, it should also be noted that the 16KB

buffer consumes 2.2× less energy for access compared to the

64 KB buffer, as shown in Fig. 4. Hence, 16 KB of memory at

each HA instance could be the sweet spot considering that only

3 layers out of the 13 unique layers utilize more than 16KB

of at each HA instance of the proposed design. However, the

total access is more for the distributed system due to data

duplication.



Further, as shown in Fig. 5, it is observed that either input or

weight only occupies a small capacity at any given time, hence

it is further beneficial to split the larger buffer into smaller

buffers for inputs, weights and outputs to achieve low access

energy. However, as storage requirements for inputs, weights

and outputs in the buffer vary drastically from initial layers

to deeper layers, another level of buffer storage needs to be

introduced. The buffers closer to the Multiply-Accumulation

(MAC) unit (one each for input, weight and output) will act as

the data source and see the most accesses due to reuse, while

a larger global buffer stores the bulk data. Further, groups of

these MACs can be organized together as Processing Elements

for better resource sharing.

D. Processing Element Architecture
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Processing Element (PE) organizes a set of MAC units and

its associated buffers such that they can be easily controlled

and scheduled. Further, the organization allows for shared

access to resources within the PE such as buffers. Recent

works such as Simba [7] and AiM GDDR6 [10] have shown

that the number of buffer access during inference can be

reduced by using a set of vector MACs.

The input and output channels of DNNs are typically a

multiple of 8 [1], [2], [21], [22]. Hence, a single input word

can be shared across eight vector MACs during computation,

reducing the number of reads to the buffer storing inputs

while ensuring all the Vectors MACs can be utilized for the

majority case. Further, within a vector MAC, words from 8

input channels that are on top of each other can be convolved

together with the weights belonging to a single filter and

accumulated using an adder tree to a single word output, thus

reducing writes to the Accumulation/Output Buffer that stores

the output data. From Fig. 5, it was observed that the smallest

chunk of data that is used repeatedly is between 256 B and

1 KB. Hence the buffers that provide data to the vector MACs

are sized to be 1 KB each. In this proposed PE design, as

shown in Fig. 6, there are a total of 64 multipliers that can

participate in MAC operation during a cycle.

Area and Energy of PE: With the allocation of buffer size

and count of Vector MACs as shown in Fig. 6, the area and

Total Area = 0.112 mm2

Regs

InputBuf

WeightBuf

OutputBuf

VecMACs

Peak Energy = 110pJ

(a) Area (b) Energy

Fig. 7. (a) Area occupied and (b) Peak Energy consumed by a single PE

peak energy consumed by the PE is given in Fig. 7. It can

be observed that within the PE, while weight buffers together

are the largest area consumer, the Vector MACs consume the

most energy.

Architecture of HA Instance: We propose a symmetric

HA instance at each channel of HBM3. The PE is taken as an

atomic entity that can be connected together using a Network-

on-Chip (NoC), which in turn is connected to a Global Buffer

(Glb), which can act as the main buffer whose size is identified

in Section IV-C. Hence, the total number of PEs should not

violate the area and power constraints of the 3D Memory

system. When operating at a frequency of 1GHz, each PE

consumes a peak power of 0.11 W. With a total TDP of 15 W

for the 3D memory, and accounting for the margin for DRAM

and Glb access energy, roughly 64 instances of the PE can

be instantiated. This translates to 4 PEs per HA instance at

the channel level. Further, at the system level, the total area

occupied by the design will be 12.37 mm
2, with the GLB

occupying 0.1 mm
2 and each HA instance occupying less

than 1 mm
2. Hence, the design is limited by TDP, rather than

area. The proposed architecture of the HA instance at each

channel is shown in Fig. 6.

E. Dynamic Frequency Scaling

With the multiplier being the slowest component in the

critical path, based on synthesis of components, the design can

operate at a Frequency of up to 1.4GHz, provided the TDP

headroom allows it. If the total system power exceeds TDP

then the frequency can be brought down by up to 500MHz,

albeit costing leakage power.

V. SOTA NDP WITH HIGHEST PEAK TOPS

TABLE II
PERFORMANCE AND ENERGY COMPARISON OF STATE-OF-THE-ART

ACCELERATORS FROM CHA AND NDP PARADIGMS

INT - Integer, FP - Floating Point, AFPX10 - Approx. Fixed Posit
Paradigm

CHA NDP
STICKER Exynos Simba Neurostream HYDRA Tetris EnX3D (Proposed)

Technology (nm) 65 8 16 28 15 45 45

Performance (Peak TOPS) 0.1 1.91 4.01 0.26 3.07 3.14 8.19

Format 8INT 8INT 8INT 32FP 16INT 16INT AFPOX10

Core Energy (pJ/op/bit) 0.9 0.08 0.52 3.2 2 1.4 0.31

Related Works [6], [32]–[38] [11]–[15], [39]–[41], [41]

Table II shows some relevant related works’ details. [11],

[13]–[16], [39]–[42] are the relevant DNN accelerator works

in the NDP domain. Of these, Tetris [11] (NDP:SOTA) has

the highest peak compute throughput of 3.14 TOPS. Further,

we note that the performance details of [16] are missing in

the literature; therefore, a comparison is not made. Simba [7]

(CHA:SOTA) from the CHA paradigm with a peak throughput

of 4.01 TOPS and implemented with 16-bit word size is also

considered for comparison.



VI. RESULTS AND EVALUATION

In this section, we examine the performance and constraint

metrics of the proposed hardware accelerator EnX3D, im-

plemented on HBM3 and compare it against state-of-the-art

conventional and NDP accelerators.

A. Constraint Check

Proposed design should not violate the physical constraints

put on it due to the implementation on 3D memory.

SOTA CHA
Area = 12.56 mm2

MAC Regs OutBuf WeightBuf InputBuf GLB

SOTA NDP
Area = 29 mm2

EnX3D
Area = 12.36 mm2

Fig. 8. Area comparison

1) Area

Fig. 8 shows the partition of the area occupied by the

complete EnX3D architecture with its 16 instances against

SOTA NDP and SOTA CHA accelerators. First, the area of

the proposed design is less than 36 mm
2 and therefore does

not violate the area constraint of both HMC and HBM3.

Second, we note that the area occupied by the global buffer of

SOTA NDP is much larger than the proposed design. Third,

in the proposed design, the area occupied by the MAC unit

is a significantly larger proportion than the other structures,

compared to SOTA NDP and CHA designs. Further, compared

to SOTA NDP, the area utilization reduces by 2.36×.
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2) Thermal Design Power (TDP)

Fig. 9 shows the average power drawn by the proposed

design when inferencing CNNs. We observe that the power

draw of EnX3D:HBM is below the simple active cooling

threshold of 15 W.

B. Performance Analysis

HA for DNN workloads needs to have low latency and

high energy efficiency. This section compares the speedup and

energy efficiency of the proposed HAs.
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1) Speedup

Fig. 10 shows the speedup of SOTA CHA and EnX3D im-

plementations against SOTA NDP. It is observed that EnX3D:

HBM and EnX3D:HMC, on average, has a speedup of 3× and

2.5× compared to SOTA NDP. Further, we observe that for

workloads such as MobileNet and ResNet with smaller filter

sizes, EnX3D:HBM is significantly faster than EnX3D:HMC.

This is because smaller filter size results in fewer data reuse

of input words leading to higher bandwidth requirements.

HBM3 with 4× the bandwidth of HMC can satisfy the

bandwidth requirement, whereas HMC-based implementation

is bandwidth bottlenecked. Similarly, SOTA CHA, with 25%

higher peak throughput than SOTA NDP, has lower speedup

than SOTA NDP for these workloads with smaller filters as

the DDR4 DRAM interface has only 10% bandwidth capacity

as that of HMC.
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Fig. 11. Energy Efficiency

2) Energy Efficiency

Fig. 11 shows the energy efficiency of the proposed HA

compared to SOTA designs as a ratio of energy used for infer-

ence for each workload vs baseline NDP. The average energy

efficiency of EnX3D is at least 6× higher than NDP:SOTA.

Further, we observe that SOTA NDP is more energy efficient

for DNNs with smaller filters than SOTA CHA.
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Fig. 12. Amortized energy spent at system level per MAC operation

3) Energy Distribution

Fig. 12 shows the amortized energy spent per MAC op-

eration within the system. We observe that the 16-bit inte-

ger MAC unit in CHA:SOTA consumes more energy than

NDP:SOTA due to higher operating frequency. However, using

the AFPX10 multiplier with posit number system [27], [30],

[31], has brought down the MAC energy by ∼5× compared to

SOTA HAs. In CHA: SOTA, we observe that the buffer access

energy is very low compared to overall energy, but the DRAM

access energy dominate and drives the overall energy higher.

In NDP:SOTA, the buffer access energy is 48% on average.

This can be attributed primarily to two reasons. First, the row

stationary approach with individual MACs in the SOTA design

leads to a higher access count to the buffers. Second, due to

the higher access count, the MAC’s local buffers are smaller

and cannot hold the necessary data long enough, resulting

in re-fetching from the Glb, which in turn increases energy

spent on Glb. EnX3D implementations have low buffer access

energy due to the Vector MAC, and adder tree design which

reduces reads and writes to the local buffers. Further, the 1



KB input buffer, along with the 128 B output buffer, allows

the weights read from the weight buffers to be used multiple

times before changing to another row of the buffer by rotating

the set of inputs present in the input buffer and writing the

partial product to different locations in the output buffer. Since

the total number of weight words that can be read per cycle is

8× more than input words, this policy saves energy. Further,

in EnX3D designs, the global buffer with the size of 16 KB

is just sufficient to hold the necessary set of DNN data for

computation (as seen in Section IV-C), and the access energy

to the Glb is minimal, and the access to the HBM/HMC is

also minimal.

VII. CONCLUSION

Near Data Processing (NDP) paradigm-based accelerators,

which implement the compute elements close to the memory

location, typically at the logic layer of 3D memories, enjoy

high bandwidth and low access energy. However, these designs

are physically constrained in terms of area and Thermal De-

sign Point (TDP). In this work, we perform a constraint-aware

architectural exploration to find a suitable DNN Hardware

Accelerator (HA) design that provides high throughput and

low energy without sacrificing inference accuracy. We show

that the proposed architecture achieves a speedup of 3× and

energy efficiency of 6× compared to the current SOTA NDP-

based accelerator with the highest peak throughput. DNNs

such as AlexNet, MobileNet, ResNet and VGG are used for

this evaluation. The area of the proposed hardware accelerator

is less than half of the current SOTA.
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